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What Causes Variability in Medical Image Segmentation?
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Lesions Without Well-Defined Boundaries

Poorly-defined boundaries are often strongly associated with malignancy.
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Lesions Without Well-Defined Boundaries

 [1] Leung et al., 2007
[2] MacMahon et al., 2017

Poorly-defined boundaries are often strongly associated with malignancy.

“ … a suspicious solid 
spiculated nodule (arrow). 
Surgery revealed invasive 
adenocarcinoma.” [2]

“The lesion on the far left has a 
spicuated margin … we should be most 
concerned that the lesion on the far left 
is malignant. It proved to be an 
adenocarninoma …” [1]



Lesions Without Well-Defined Boundaries

 [1] Leung et al., 2007
[2] MacMahon et al., 2017
 [3] Glassman et al., 2009

Poorly-defined boundaries are often strongly associated with malignancy.

“ … a suspicious solid 
spiculated nodule (arrow). 
Surgery revealed invasive 
adenocarcinoma.” [2]

“... the image shows an irregularly shaped 
mass with spiculations and a 
heterogeneous internal enhancement 
pattern, which proved to be an invasive 
lobular carcinoma.” [3]

“The lesion on the far left has a 
spicuated margin … we should be most 
concerned that the lesion on the far left 
is malignant. It proved to be an 
adenocarninoma …” [1]



Pseudopods: A Morphologic Feature in Dermoscopy

“Pseudopods are finger-like 
projections of dark pigment (brown 
to black) at the periphery of the lesion. 
They have small knobs at their tips, 
and are connected to either a central 
pigment network or central 
pigmented blotch.” [4]

 [4] Kittler et al.
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Pseudopods: A Morphologic Feature in Dermoscopy

“We studied 239 pigmented lesions, 80 
melanomas … the pseudopod retained a 97% 
specificity and 23% sensitivity for invasive 
melanoma.” [5]

   [5] Menzies et al., 1995



Pseudopods: A Morphologic Feature in Dermoscopy

“We studied 239 pigmented lesions, 80 
melanomas … the pseudopod retained a 97% 
specificity and 23% sensitivity for invasive 
melanoma.” [5]

“40 studies including 22 796 skin lesions and 
5736 melanomas … we affirmed the 
diagnostic importance of dermoscopic 
structures associated with melanoma 
detection … The features with the highest 
specificity were pseudopods (97.3%; 95% CI, 
94.3%-98.7%) …” [6]

   [5] Menzies et al., 1995
    [6] Williams et al., 2021



Segmenting Skin Lesions with Irregular Borders

The presence of irregular borders, e.g., 
pseudopods, make it difficult to delineate 
lesion borders, and may contribute to 
annotator variability.
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Segmenting Skin Lesions with Irregular Borders

The presence of irregular borders, e.g., 
pseudopods, make it difficult to delineate 
lesion borders, and may contribute to 
annotator variability.

Hypothesis: Annotator (dis)agreement is related 
to malignancy.

No prior research investigating an association 
between the quantitative level of 
inter-annotator agreement (IAA) in skin lesion 
segmentation and malignancy. 11



IMA++: A New Skin Lesion Segmentation Dataset

Curated from the ISIC Archive:

● 2,394 dermoscopic images
● 5,111 unique segmentation masks
● 15 unique annotators
● 3 annotation tools:

○ T1: manual polygon tracing
○ T2: semi-automated flood-fill
○ T3: fully automated seg. reviewed by expert

● 2 skill levels: S1, S2

12



IMA++: A New Skin Lesion Segmentation Dataset

Curated from the ISIC Archive:

● 2,394 dermoscopic images
● 5,111 unique segmentation masks
● 15 unique annotators
● 3 annotation tools:

○ T1: manual polygon tracing
○ T2: semi-automated flood-fill
○ T3: fully automated seg. reviewed by expert

● 2 skill levels: S1, S2

The largest public multi-annotator skin lesion segmentation dataset.
13



IMA++: Representative Samples

2 masks 3 masks 4 masks 5 masks
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IMA++: “Conflicting” Masks
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IMA++: “Conflicting” Masks
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IMA++: “Conflicting” Masks

23 images have entirely 
“conflicting” masks
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Quantifying Inter-Annotator Agreement (IAA)

For an image Xi with segmentation masks {Sik},

compute IAA score Zi = g({Sik}),

where g() is a similarity measure:
ISIC_0023316
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Quantifying Inter-Annotator Agreement (IAA)

For an image Xi with segmentation masks {Sik},

compute IAA score Zi = g({Sik}),

where g() is a similarity measure:

● overlap-based (Dice similarity coefficient)
● boundary-based (Hausdorff distance)
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Quantifying Inter-Annotator Agreement (IAA)

For an image Xi with segmentation masks {Sik},

compute IAA score Zi = g({Sik}),

where g() is a similarity measure:

● overlap-based (Dice similarity coefficient)
● boundary-based (Hausdorff distance)

Dice = 
0.6511

Dice = 
0.7422

Dice = 
0.6602

ISIC_0023316
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Quantifying Inter-Annotator Agreement (IAA)

For an image Xi with segmentation masks {Sik},

compute IAA score Zi = g({Sik}),

where g() is a similarity measure:

● overlap-based (Dice similarity coefficient)
● boundary-based (Hausdorff distance)

Dice = 
0.6511

Dice = 
0.7422

Dice = 
0.6602

IAA = 0.6845

ISIC_0023316
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Quantifying Inter-Annotator Agreement (IAA)

For an image Xi with segmentation masks {Sik},

compute IAA score Zi = g({Sik}),

where g() is a similarity measure:

● overlap-based (Dice similarity coefficient)
● boundary-based (Hausdorff distance)

IAA (Dice Similarity Coeff.)
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Quantifying Inter-Annotator Agreement (IAA)

For an image Xi with segmentation masks {Sik},

compute IAA score Zi = g({Sik}),

where g() is a similarity measure:

● overlap-based (Dice similarity coefficient)
● boundary-based (Hausdorff distance)

Skewed distributions

Peaks at high IAA
Long tails extending to 0 IAA

IAA (Dice Similarity Coeff.)
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Inter- and Intra-Factor Agreement in IMA++

Factors: annotator, segmentation tool, skill, lesion malignancy.
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Inter- and Intra-Factor Agreement in IMA++

Factors: annotator, segmentation tool, skill, lesion malignancy.

Analysis:

● Mann-Whitney U Test: assess if the factor-based differences are stat. sig.

● Cohen’s d: quantifies the effect size to show the magnitude of the difference.
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High Intra-Annotator Agreement

Factors: annotator, segmentation tool, skill, lesion malignancy.

Annotators agree more with themselves than they do with others.
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Tool(s) Used and Annotator Skill Level Matter

Factors: annotator, segmentation tool, skill, lesion malignancy.

Annotators agree more when they use the same tool or have similar skill levels.
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Lesion Malignancy Significantly Affects IAA

Factors: annotator, segmentation tool, skill, lesion malignancy.

Malignant skin lesions tend to exhibit lower IAA (Dice).

Conclusion: Lesion boundary ambiguity captured by IAA aligns with malignancy.
28



Testing for Systematic Difference in IAA Distributions

First order stochastic dominance (FOSD) test 
to examine if a systematic difference exists 
between IAA scores for benign and 
malignant lesions. 

29



Testing for Systematic Difference in IAA Distributions

First order stochastic dominance (FOSD) test 
to examine if a systematic difference exists 
between IAA scores for benign and 
malignant lesions. 

FOSD: dist. fA(x) first-order stochastically 
dominates dist. fB(x) if ∀x, with strict 
inequality for some x:

FA(x) ≤ FB(x).
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FOSD: dist. fA(x) first-order stochastically 
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Testing for Systematic Difference in IAA Distributions

First order stochastic dominance (FOSD) test 
to examine if a systematic difference exists 
between IAA scores for benign and 
malignant lesions. 

FOSD: dist. fA(x) first-order stochastically 
dominates dist. fB(x) if ∀x, with strict 
inequality for some x:

FA(x) ≤ FB(x).

This is denoted by FA ⪰1 FB.

PDFs   ━━ fA (x)    ━━ fB 
(x)

CDFs  ━━ FA (x)    ━━ 
FB (x)



IAA Distribution Shifts due to Malignancy

CDFs of Malignant vs Benign

━━  Malignant ━━  
Benign
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IAA Distribution Shifts due to Malignancy

Fben ≤ Fmal ?

Two one-sided FOSD tests:

● Hmal ⪰1 ben →rejected

● Hben ⪰1 mal →failed to reject

CDFs of Malignant vs Benign

━━  Malignant ━━  
Benign
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IAA Distribution Shifts due to Malignancy

Fben ≤ Fmal ?

Two one-sided FOSD tests:

● Hmal ⪰1 ben →rejected

● Hben ⪰1 mal →failed to reject

Benign lesions exhibit higher 
segmentation consensus.

CDFs of Malignant vs Benign

━━  Malignant ━━  
Benign
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Can We Predict IAA from Images Alone?

Given a skin lesion image Xi, can we directly predict Zi without requiring access 
to the underlying segmentations?
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Can We Predict IAA from Images Alone?

Given a skin lesion image Xi, can we directly predict Zi without requiring access 
to the underlying segmentations?
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Can We Predict IAA from Images Alone?

Given a skin lesion image Xi, can we directly predict Zi without requiring access 
to the underlying segmentations?

Experiments: 

● 13 CNN & ViT backbones with a regression head.
● SmoothL1 loss (L1 loss for large errors; L2 loss for small errors).
● MAE and MSE reported; model with best MAE chosen. 39



IAA Can Be Predicted from Images Alone
13 models of varying 
compute sizes 
(multiply-accumulate 
operations; MACs).

Mean Absolute Error (MAE)
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IAA Can Be Predicted from Images Alone
13 models of varying 
compute sizes 
(multiply-accumulate 
operations; MACs).

All models predict MAE in 
[0.108, 0.135].

Top 3 models:

● ResNet-18 (MAE = 0.108)
● MobileNetV2 (MAE = 0.109)
● EfficientNet-B1 (MAE = 0.110)

Mean Absolute Error (MAE)
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Grad-CAM++ heatmaps for the ResNet-18 regressor show that the model learns 
lesion boundary ambiguity cues that reflect annotator variability.

IAA Regressor Learns to Localize Lesion Boundary

ISIC_0000373

True IAA
0.9197

Pred. IAA
0.8823
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Grad-CAM++ heatmaps for the ResNet-18 regressor show that the model learns 
lesion boundary ambiguity cues that reflect annotator variability.

ISIC_0000373

IAA Regressor Learns to Localize Lesion Boundary

0.9197 0.8823
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Grad-CAM++ heatmaps for the ResNet-18 regressor show that the model learns 
lesion boundary ambiguity cues that reflect annotator variability.

IAA Regressor Learns to Localize Lesion Boundary

0.9197 0.8823
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Grad-CAM++ heatmaps for the ResNet-18 regressor show that the model learns 
lesion boundary ambiguity cues that reflect annotator variability.

0.9197 0.8823

ISIC_0000373

0.5901 0.6528

ISIC_0014792

0.7968 0.8325

ISIC_0000132

0.9815 0.9727

ISIC_0015034

0.9155 0.9126

ISIC_0000013

0.7628 0.7300
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Correct lesion localization 
despite “true” IAA = 0.0 ⇒ label 

noise, not prediction error.

IAA Regressor Learns to Localize Lesion Boundary
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Can We Leverage IAA as a “Soft” Clinical Feature?

Multi-task methods (diagnosis + segmentation) improve diagnosis performance

But, lesion segmentation can be affected by inter-annotator differences.
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Can We Leverage IAA as a “Soft” Clinical Feature?

Multi-task methods (diagnosis + segmentation) improve diagnosis performance

But, lesion segmentation can be affected by inter-annotator differences.

Hypothesis: Learning the variability in human interpretation inherently captures 
complex morphological characteristics indicative of malignancy (e.g., border 
irregularity, asymmetry), which are often difficult to formalize/influenced by 
annotator subjectivity.

Research Question: Does simultaneous prediction of IAA and diagnosis 
improve the latter?
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Predicting IAA and Diagnosis in a Multi-Task Framework

A multi-task model:

● Regression head → IAA
● Classification head → diagnosis

● Multi-task loss: α Ldiagnosis + (1 - α) Lregression
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Predicting IAA and Diagnosis in a Multi-Task Framework

A multi-task model:

● Regression head → IAA
● Classification head → diagnosis

● Multi-task loss: α Ldiagnosis + (1 - α) Lregression

From the original 
regression-only model
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Predicting IAA and Diagnosis in a Multi-Task Framework

A multi-task model:

● Regression head → IAA
● Classification head → diagnosis

● Multi-task loss: α Ldiagnosis + (1 - α) Lregression

To a new 
multi-task model
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How do Multi-Task Models Fare Against Diag. Only Models?

Experiment: Vary α to study the relative importance of IAA prediction.
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Multi-Task Models Diagnose Better than Diag. Only Models

Experiment: Vary α to study the relative importance of IAA prediction.

Results:

● Diagnosis-dominant (α = 0.9) multi-task models perform the best.
● Multi-task models outperform diagnosis-only models.

Diag. Only

Multi-Task

ResNet-18
AU

RO
C

αα = 0
Lregression

α = 1
Ldiagnosis
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Multi-Task Models Diagnose Better than Diag. Only Models

Experiment: Vary α to study the relative importance of IAA prediction.

Results:

● Diagnosis-dominant (α = 0.9) multi-task models perform the best.
● Multi-task models outperform diagnosis-only models.

Diag. Only

Multi-Task

ResNet-18 MobileNetV2 EfficientNet-B1

AU
RO

C

α α α
53



What about IAA-Aware Diagnosis on External Datasets?

Multi-task models, trained on IMA++, fine-tuned on 4 dermoscopic datasets.
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IAA-Aware Diagnosis Improves Performance on Other Datasets

Multi-task models, trained on IMA++, fine-tuned on 4 dermoscopic datasets.

ResNet-18
AU

RO
C

Dataset 55



IAA-Aware Diagnosis Improves Performance on Other Datasets

Multi-task models, trained on IMA++, fine-tuned on 4 dermoscopic datasets.

ResNet-18 MobileNetV2 EfficientNet-B1

AU
RO

C

Dataset Dataset Dataset
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IAA-Aware Diagnosis Improves Performance on Other Datasets

Multi-task models, trained on IMA++, fine-tuned on 4 dermoscopic datasets.

Performance gains may be transferable: Collect multi-annotator masks once 
(IMA++), transfer gains downstream to single-annotator datasets.

ResNet-18 MobileNetV2 EfficientNet-B1

AU
RO

C

Dataset Dataset Dataset
57



Conclusion

● IMA++ enables the largest skin lesion segmentation variability study.
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● IMA++ enables the largest skin lesion segmentation variability study.

● Benign lesions show higher IAA than malignant (distribution shift).
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Conclusion

● IMA++ enables the largest skin lesion segmentation variability study.

● Benign lesions show higher IAA than malignant (distribution shift).

● Predicting IAA and diagnosis in a multi-task framework improves diagnostic 
performance, including on single-annotator datasets.
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Conclusion

● IMA++ enables the largest skin lesion segmentation variability study.

● Benign lesions show higher IAA than malignant (distribution shift).

● Predicting IAA and diagnosis in a multi-task framework improves diagnostic 
performance, including on single-annotator datasets.

● Future work: Is averaging a pairwise metric (Dice, Hausdorff distance) the 
best way to capture groupwise IAA?
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Thank you.

Questions?

kabhishe@sfu.ca
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