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What Causes Variability in Medical Image Segmentation?
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Lesions Without Well-Defined Boundaries

Poorly-defined boundaries are often strongly associated with malighancy.



Lesions Without Well-Defined Boundaries

Poorly-defined boundaries are often strongly associated with malignancy.

“The lesion on the far left has a
spicuated margin .. we should be most
concerned that the lesion on the far left

is malighant. It proved to be an
adenocarninoma .." [1]

/\_/\/

" .. a suspicious solid
spiculated nodule (arrow).
Surgery revealed invasive
adenocarcinoma.’ [2]

[1] Leung et al., 2007
[2] MacMahon et al., 2017



Lesions Without Well-Defined Boundaries

Poorly-defined boundaries are often strongly associated with malignancy.

“The lesion on the far left has a
spicuated margin .. we should be most
concerned that the lesion on the far left
is malighant. It proved to be an
adenocarninoma .." [1]

/\_/\/

" .. asuspicious solid
spiculated nodule (arrow).
Surgery revealed invasive
adenocarcinoma.’ [2]

".. the image shows an irregularly shaped
mass with spiculations and a
heterogeneous internal enhancement
pattern, which proved to be an invasive
lobular carcinoma.’ [3]

/\_/\/

[1] Leung et al., 2007
[2] MacMahon et al., 2017
[3] Glassman et al., 2009



Pseudopods: A Morphologic Feature in Dermoscopy

"Pseudopods are finger-like
projections of dark pigment (brown
to black) at the periphery of the lesion.
They have small knobs at their tips,
and are connected to either a central
oigment network or central
nigmented blotch.” [4]

6
[4] Kittler et al.



Pseudopods: A Morphologic Feature in Dermoscopy

"We studied 239 pigmented lesions, 80
melanomas .. the pseudopod retained a 97%
specificity and 23% sensitivity for invasive
melanoma. [5]

[5] Menzies et al., 1995



Pseudopods: A Morphologic Feature in Dermoscopy

"We studied 239 pigmented lesions, 80
melanomas .. the pseudopod retained a 97%
specificity and 23% sensitivity for invasive
melanoma. [5]

40 studies including 22 796 skin lesions and
5736 melanomas .. we affirmed the
diagnostic importance of dermoscopic
structures associated with melanoma
detection .. The features with the highest
specificity were pseudopods (97.3%; 957% Cl,
04.3%-98.7%) .." O]

[5] Menzies et al., 1995
[6] Williams et al., 2021



Segmenting Skin Lesions with Irregular Borders

The presence of irregular borders, €.g.,
pseudopods, make it difficult to delineate
lesion borders, and may contribute to
annotator variability.
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The presence of irregular borders, €.g.,
pseudopods, make it difficult to delineate
lesion borders, and may contribute to
annotator variability.
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Segmenting Skin Lesions with Irregular Borders

The presence of irregular borders, €.g.,
pseudopods, make it difficult to delineate
lesion borders, and may contribute to
annotator variability.

Hypothesis: Annotator (dis)agreement is related
to malignancy.

No prior research investigating an association
between the quantitative level of
inter-annotator agreement (IAA) in skin lesion
segmentation and malighancy.
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IMA++: A New Skin Lesion Segmentation Dataset
2130

Curated from the ISIC Archive:
10 =
e 2,394 dermoscopic images :

® 5,111 unigue segmentation masks
e 15 unigue annotators

e 3 annotation tools:

o T1: manual polygon tracing
o T2: semi-automated flood-fill 10 =
o T3: fully automated seg. reviewed by expert ] 4

o 2 skill levels: 51, S2 : 5 3 A 5

10 =

Number of Images

Number of Segmentations per Image
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IMA++: A New Skin Lesion Segmentation Dataset
2130

Curated from the ISIC Archive:
10 =
2,394 dermoscopic images :

5,111 unigue segmentation masks
15 unigue annotators

3 annotation tools:

o T1: manual polygon tracing
o T2: semi-automated flood-fill 10 =
o T3: fully automated seg. reviewed by expert ] 4

e 2 skill levels: 51, S2 : 5 3 A 5

10 =

® o o o
Number of Images

Number of Segmentations per Image

The largest public multi-annotator skin lesion segmentation dataset.
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IMA++: Representative S

2 masks 3 Mmasks
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IMA++: “Conflicting” Masks
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IMA++: “Conflicting” Masks
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IMA++: “Conflicting” Masks

23 Images have entirely
“conflicting” masks
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Quantifying Inter-Annotator Agreement (I1AA)

For an image X, with segmentation masks {S_ 1
compute IAA score Z. = g(IS, D),

where g0 Is a similarity measure:

ISIC_0023316
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Quantifying Inter-Annotator Agreement (I1AA)

For an image X, with segmentation masks {S_ 1
compute IAA score Z. = g(IS, D),
where g() Is a similarity measure:

e overlap-based (Dice similarity coefficient)
e boundary-based (Hausdorff distance)

ISIC_0023316
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Quantifying Inter-Annotator Agreement (I1AA)

For an image X, with segmentation masks {S_ 1
compute IAA score Z. = g(IS, D),
where g() Is a similarity measure:

e overlap-based (Dice similarity coefficient)
e boundary-based (Hausdorff distance)

ISIC_0023316

Dice =
0.6602




Quantifying Inter-Annotator Agreement (I1AA)

For an image X, with segmentation masks {S_ 1
compute IAA score Z. = g(IS, D),
where g() Is a similarity measure:

e overlap-based (Dice similarity coefficient)
e boundary-based (Hausdorff distance)

Dice =
0.0511

ISIC_0023316

|AA = 0.6845

Dice =
0.6602
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Quantifying Inter-Annotator Agreement (I1AA)
For an image X, with segmentation masks IS, I, I | ||

compute IAA score Z = g(IS, D, . 250-
O
where g is a similarity measure; & 200-
A 150-
e overlap-based (Dice similarity coefficient) 4
e boundary-based (Hausdorff distance) g 100°
3 50-
=
jg 0+ ‘

0.0 0.5 1.0
|IAA (Dice Similarity Coeff.)
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Quantifying Inter-Annotator Agreement (I1AA)

e

For an image X, with segmentation masks {S, }
compute IAA score Z. = g({S, 1),
where g() is a similarity measure:

e overlap-based (Dice similarity coefficient)
e boundary-based (Hausdorff distance)

Skewed distributions

Peaks at high IAA
Long tails extending to 0 IAA

250+
200 -
150 -
100 -

50

IAA (Hausdorff Distance

-

0.0 0.5 1.0
|IAA (Dice Similarity Coeff.)
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Inter- and Intra-Factor Agreement in IMA++

Factors: annotator, segmentation tool, skill, lesion malignancy.
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Inter- and Intra-Factor Agreement in IMA++
Factors: annotator, segmentation tool, skill, lesion malignancy.
Analysis:

e Mann-Whitney U Test: assess if the factor-based differences are stat. sig.

e Cohen's d: quantifies the effect size to show the magnitude of the difference.
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High Intra-Annotator Agreement

Factors: annotator, segmentation tool, skill, lesion malignancy.

Annotators agree more with themselves than they do with others.

|AA
p-value

Cohen's d

Annotator

Same Different
0.900 +0131 | 0.772 +0.221

1.85E-35

2.714
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Tool(s) Used and Annotator Skill Level Matter

Factors: annotator, segmentation tool, skill, lesion malignancy.

Annotators agree more when they use the same tool or have similar skill levels.

Tool

Same Different
0.862 0157  0.747 +0.231

SKkill
SEIE Different
0.806 + 0167 0.710 +0.258

2.45E-69

1.17E-05

2.447

1.816
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Lesion Malignancy Significantly Affects |IAA

Factors: annotator, segmentation tool, skill, lesion malignancy.

Malignant skin lesions tend to exhibit lower IAA (Dice).

Malignancy

Benign Malignant
0.791 z0225 | 0.7953 0207
4.77E-06
0.798

Conclusion: Lesion boundary ambiguity captured by IAA aligns with malignancy.
28



Testing for Systematic Difference in |AA Distributions

First order stochastic dominance (FOSD) test
to examine if a systematic difference exists
oetween |AA scores for benign and
malighant lesions.
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Testing for Systematic Difference in |AA Distributions

First order stochastic dominance (FOSD) test
to examine if a systematic difference exists
oetween |AA scores for benign and
malignant lesions.

FOSD: dist. f,(x) first-order stochastically
dominates dist. f(x) if V' x, with strict
iInequality for some x:

F.(x) < F_(x).
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Testing for Systematic Difference in |AA Distributions
PDFs —f, () —f

First order stochastic dominance (FOSD) test . ) ’ )
to examine if a systematic difference exists 6

oetween |AA scores for benign and

malighant lesions. 10

FOSD: dist. f,(x) first-order stochastically - h Ofo b -

dominates dist. f(x) if V' x, with strict
iInequality for some x:

F.(x) < F_(x).
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Testing for Systematic Difference in |AA Distributions

malignant lesions.

FOSD: dist. f,(x) first-order stochastically
dominates dist. f(x) if V' x, with strict

iInequality for some x:

F.(x) < F_(x).

First order stochastic dominance (FOSD) test
to examine if a systematic difference exists
oetween |AA scores for benign and

PDFs
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Testing for Systematic Difference in |AA Distributions

malignant lesions.

FOSD: dist. f,(x) first-order stochastically
dominates dist. f(x) if V' x, with strict

iInequality for some x:

F.(x) < F_(x).

Thisisdenoted by F, = F_.

First order stochastic dominance (FOSD) test
to examine if a systematic difference exists
oetween |AA scores for benign and

PDFs

25
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|AA Distribution Shifts due to Malignancy

CDFs of Malignhant vs Benign

1.00

— Malignant  =—
Benign

0.75

0.50

0.25

0.00
0.00 0.25 0.50 0.75 1.00

IAA (Dice)



|AA Distribution Shifts due to Malignancy

1.00

0.75

0.50

0.25

0.00
0.00

CDFs of Malignant vs Benign Foen = Fral ?
— Malignant  =—
Senign Two one-sided FOSD tests:
¢ Hmal 21 ben _)reJeCted
e H . —faledtoreject

0.25

0.50 0.75 1.00

IAA (Dice)
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|AA Distribution Shifts due to Malignancy

1.00

0.75

0.50

0.25

0.00

0.00

CDFs of Malignhant vs Benign

— Malignant
Benign

IAA (Dice)

Two one-sided FOSD tests:

o H

mal >1 ben

—rejected

o H —falled to reject

ben >1 mal

Benign lesions exhibit higher
segmentation consensus.



Can We Predict IAA from Images Alone?

Given a skin lesion image X, can we directly predict Z, without requiring access
to the underlying segmentations?
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Can We Predict IAA from Images Alone?

Given a skin lesion image X, can we directly predict Z, without requiring access

to the underlying segmentations?

Regression
head Fr
_’
\
Image Backbone
Xi Fy

s

Regression Loss

> CCR (Zl', Zi))<

IAA Score

7Z; = 0.855 ¢

0y
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Can We Predict IAA from Images Alone?

Given a skin lesion image X, can we directly predict Z, without requiring access
to the underlying segmentations?

Regression Regression Loss
head Fgr 7 (L., (Z;, Z;) ) IAA Score
*>_’d (& ) Z; = 0.855
\
Image Backbone
Xj Fp
I

Experiments:

e 13 CNN & VIT backbones with a regression head.
e SmoothlL1 loss (L1 loss for large errors; L2 loss for small errors).
e MAE and MSE reported; model with best MAE chosen. -



|JAA Can Be Predicted from Images Alone

13 models of varying 0,045
compute sizes ® VGG-16
® ResNet-18
- SwinV2-T

(multiply-accumulate " O ResNet-50

— ® MobileNetV2
: , 0.040 ConvNeXt-T

operations; MACs). o e * MobileNetVaL
> Swin-T » DenseNet-121
N » EfficientNet-BO
] 0.035 Q ConvNeXt-T
Q) Swin-T
(2 ResNet-50 DenseNet-121 SwinVo-T
© -
s e
O -
) 0.030 EfficientNet-BO
(G EfficientNet-B1 ©
8 O
S MobileNetV2

@ o “MobileNetV3L

0.025 |ResNet-18

0.020

0.110 0.115 0.120 0.125 0.130 0.135

Mean Absolute Error (MAE)
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|JAA Can Be Predicted from Images Alone

13 models of varying 0,045
compute sizes * VGG-16
® ResNet-
. | ResNet-18
(multiply-accumulate SO ResNet-50
. = 0.040 ConvNeXt-T ® MobileNetV2
operations; MACs). % | © MobileNetV3L
> win- ® DenseNet-121
: : - ST » EfficientNet-BO
All models predict MAE In O Vnéﬂs T30 * EfficientNet-B1
[0108, 0135] ] 0.035 | g\(l)vri\r:/-ltlreXt-T
8 ResNet-50 DenseNet-121 SwinVo-T
© ViT-B/16
o ] VIT-B/32
o) 0030 EfficientNet-B0 °
C EfficientNet-B1
Top 3 models: S 0
> ® MobileNgtVZ
e ResNet-18 (MAE = 0.108) 0025 [ResNet-1g o1
e MobileNetV2 (MAE = 0.109)
e EfficientNet-B1 (MAE = 0.110)
P02 0.110 0.115 0.120 0.125 0.130 0.135

Mean Absolute Error (MAE)
41



|AA Regressor Learns to Localize Lesion Boundary

Grad-CAM++ heatmaps for the ResNet-18 regressor show t
lesion boundary ambiguity cues that reflect annotator va

ISIC_0000373

0.919/

True IAA  Pred. IAA

0.8823

nat the model learns

.

ability.
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|AA Regressor Learns to Localize Lesion Boundary

Grad-CAM++ heatmaps for the ResNet-18 regressor show that the model learns
lesion boundary ambiguity cues that reflect annotator variability.

ISIC_0000373

0.9197 0.8823
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|AA Regressor Learns to Localize Lesion Boundary

Grad-CAM++ heatmaps for the ResNet-18 regressor show that the model learns
lesion boundary ambiguity cues that reflect annotator variability.

ISIC_0015034

ISIC_0000013 ISIC_0000373 ISIC_0014792 ISIC_0000132

Benign

7y X

. e 2 08
0.9815 0.9727 0.9155 0.9126 0.9197 0.8823 0.5901 0.6528 0.7968 0.8325

ISIC_0010156 ISIC_0011858 ISIC_0000373 ISIC_0015136 ISIC_0023283

Malighant

0.8775  0.8779 07965  0.8047 07628  0.7300 0.0720  0.9268 0.0000  0.6353
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|AA Regressor Learns to Localize Lesion Boundary

Grad-CAM++ heatmaps for the ResNet-18 regressor show that the model learns
lesion boundary ambiguity cues that reflect annotator variability.

ISIC_0015034

ISIC_0000013

ISIC_0000373

ISIC_0014792

ISIC_0000132

Benign

N Correct lesion localization
e n despite “true” IAA = 0.0 = label a
00815 09727 0.0155 noise, not prediction error. 0.6528 07068 08325

ISIC_0010156 ISIC_0011858 ISIC_0000373 ISIC_001513Q ISIC_0023283

Malighant

0.8775 0.8779 0.7965 0.8047 07628  0.7300 0.9720 0.9268 0.0000 0.6353
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Can We Leverage |AA as a “Soft” Clinical Feature?

Multi-task methods (diagnosis + segmentation) improve diagnosis performance

But, lesion segmentation can be affected by inter-annotator differences.
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Can We Leverage |AA as a “Soft” Clinical Feature?

Multi-task methods (diagnosis + segmentation) improve diagnosis performance

But, lesion segmentation can be affected by inter-annotator differences.

Hypothesis: Learning the variability in human interpretation inherently captures

complex morphological characteristics indicative of malignancy (e.g., border
irregularity, asymmetry), which are often difficult to formalize/influenced by
annotator subjectivity.

Research Question: Does simultaneous prediction of IAA and diagnhosis
improve the latter?

47



Predicting IAA and Diagnosis in a Multi-Task Framework

A multi-task model.

e Regression head — |AA
e Classification head — diagnosis

e Multi-task loss:; a L +(1-qa)L

diagnosis regression
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Predicting IAA and Diagnosis in a Multi-Task Framework

A multi-task model.

e Regression head — |AA
e Classification head — diagnosis

e Multi-task loss:; a L +(1-qa)L

diagnhosis regression

From the original
regression-only model Regression Regression Loss

head Fr Z; (L, (Z;, Z;) ) IAA Score
Backbone u
Fr

49



Predicting IAA and Diagnosis in a Multi-Task Framework

A multi-task model.

e Regression head — |AA
e Classification head — diagnosis

e Multi-task loss:a L +(1-a)L |
1agNoOsSIS regression
To a new
multi-task model Regression Regression Loss
head FRr L. (Z;, Zz) IAA Score
»D—»o (en % 20) Z; = 0.855
Multi-Task Loss
Image Backbone
X, P @cD (Yi, V) + (1-a) Lg (Z; Z)

Diagnosis Loss , :
- Diagnosis Label
Diagnosis

head Fp >CCD (Yi, YiD< Y; = "melanoma

=>10:0




How do Multi-Task Models Fare Against Diag. Only Models?

Experiment: Vary a to study the relative importance of |AA prediction.
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Multi-Task Models Diagnose Better than Diag. Only Models

Experiment: Vary a to study the relative importance of |AA prediction.
Results:

e Diagnosis-dominant (a = 0.9) multi-task models perform the best.
e Multi-task models outperform diagnosis-only models.

ResNet-18

0.869
Multi-Task 0‘352/
0.835

Diag. Only

AUROC

a=0 a a=1

regression diagnosis



AUROC

Multi-Task Models Diagnose Better than Diag. Only Models

Experiment: Vary a to study the relative importance of |AA prediction.

Results:

e Diagnosis-dominant (a = 0.9) multi-task models perform the best.
e Multi-task models outperform diagnosis-only models.

ResNet-18 MobileNetV2 EfficientNet-B1

0.869
2 Multi-Task o.e:eﬁ/.
0.835

Diag. Only
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What about |IAA-Aware Diagnosis on External Datasets?

Multi-task models, trained on IMA++, fine-tuned on 4 dermoscopic datasets.
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|AA-Aware Diagnosis Improves Performance on Other Datasets

Multi-task models, trained on IMA++, fine-tuned on 4 dermoscopic datasets.

AUROC

1.00

0.95

0.90

0.85

0.80

0.75

ResNet-18

® Diag. Only = Multi-Task

derm7pt ISIC 2018 ISIC 2019

Dataset
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AUROC

|AA-Aware Diagnosis Improves Performance on Other Datasets

Multi-task models, trained on IMA++, fine-tuned on 4 dermoscopic datasets.

1.00

0.95

0.90

0.85

0.80

0.75

ResNet-18

= Diag. Only ® Multi-Task

derm7pt ISIC 2018

Dataset

ISIC 2019

1.00

0.95

0.90

o

.85

o

.80

0.75

PH2

MobileNetV2

® Diag. Only m Multi-Task

derm7pt

Dataset

ISIC 2018

ISIC 2019

1.00

0.95

0.90

o

.85

o

.80

0.75

EfficientNet-B1

® Diag. Only = Multi-Task

derm7pt ISIC 2018

Dataset

ISIC 2019
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AUROC

|AA-Aware Diagnosis Improves Performance on Other Datasets

Multi-task models, trained on IMA++, fine-tuned on 4 dermoscopic datasets.

Performance gains may be transferable: Collect multi-annotator masks once
(IMA++), transfer gains downstream to single-annotator datasets.

1.00

0.95

0.90

0.85

0.80

0.75

ResNet-18

= Diag. Only ® Multi-Task

derm7pt ISIC 2018

Dataset

ISIC 2019

1.00

0.95

0.90

o

.85

o

.80

0.75

PH2

MobileNetV2

® Diag. Only m Multi-Task

derm7pt

Dataset

ISIC 2018

ISIC 2019

1.00

0.95

0.90

o

.85

o

.80

0.75

EfficientNet-B1

® Diag. Only = Multi-Task

derm7pt ISIC 2018 ISIC 2019

Dataset
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Conclusion

e |IMA++ enables the largest skin lesion segmentation variability study.
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Conclusion

e |IMA++ enables the largest skin lesion segmentation variability study.

e Benign lesions show higher IAA than malignant (distribution shift).
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Conclusion

e |IMA++ enables the largest skin lesion segmentation variability study.
e Benign lesions show higher IAA than malignant (distribution shift).

e Predicting IAA and diagnosis in a multi-task framework improves diagnhostic
performance, including on single-annotator datasets.
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Conclusion

e |IMA++ enables the largest skin lesion segmentation variability study.
e Benign lesions show higher IAA than malignant (distribution shift).

e Predicting IAA and diagnosis in a multi-task framework improves diagnhostic
performance, including on single-annotator datasets.

e Future work: Is averaging a pairwise metric (Dice, Hausdorff distance) the
best way to capture groupwise IAA?
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Thank you.

Questions?
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https://github.com/sfu-mial/skin-1AV
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