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Abstract. Accurate estimation of the body surface area (BSA) involved
by a rash, such as psoriasis, is critical for assessing rash severity, selecting
an initial treatment regimen, and following clinical treatment response.
Attempts at segmentation of inflammatory skin disease such as psori-
asis perform markedly worse on darker skin tones, potentially imped-
ing equitable care. We assembled a psoriasis dataset sourced from six
public atlases, annotated for Fitzpatrick skin type, and added detailed
segmentation masks for every image. Reference models based on U-Net,
ResU-Net, and SETR-small are trained without tone information. On
the tuning split we sweep decision thresholds and select (i) global op-
tima and (ii) per Fitzpatrick skin tone optima for Dice and binary IoU.
Adapting Fitzpatrick specific thresholds lifted segmentation performance
for the darkest subgroup (Fitz VI) by up to +31 % bloU and +24 %
Dice on UNet, with consistent, though smaller, gains in the same direc-
tion for ResU-Net (+25 % bloU, 418 % Dice) and SETR~small (+17 %
bIoU, +11 % Dice). Because Fitzpatrick skin tone classifiers trained on
Fitzpatrick-17k now exceed 95 % accuracy, the cost of skin tone labeling
required for this technique has fallen dramatically. Fitzpatrick thresh-
olding is simple, model-agnostic, requires no architectural changes, no
re-training, and is virtually cost free. We demonstrate the inclusion of
Fitzpatrick thresholding as a potential future fairness baseline.
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1 Background

1.1 Significance

Skin rashes remain one of the most frequent reasons for new primary-care en-
counters, accounting for more than 13 million office visits annually in the United
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States and rising [3]. Diagnostic accuracy is unevenly distributed: both practic-
ing dermatologists and trainees perform noticeably worse on images of darker
skin tones [4, 8]. The accurate assessment of body surface area (BSA) affected by
skin conditions, such as rashes, is crucial for clinical decision-making. Yet, physi-
cians still rely on the outdated “1 palm = 1 percent BSA” method where BSA
involved with a rash is estimated using the patient’s palm size. This subjective
measurement can lead to under- or over-treatment in the clinic. Additionally,
a minimum threshold of BSA involvement is a criterion for payors in insurance
coverage decisions, which makes accurate calculations imperative for a patient
to be eligible for more advanced biologic treatments and for following treatment
response. More specifically, BSA is an important calculation in the widely used
Psoriasis Area and Severity Index that is most often deployed in clinical trial
settings to assess baseline and treatment response for new therapeutics; these
common measures are subjective and prone to human error [2]. No widely used
tools exist to automate these important assessments in all skin types[16, 21, 26].
Any systematic error in segmenting lesions on dark skin therefore propagates
directly into PASI scores, treatment eligibility, and ultimately patient outcomes.

1.2 Previous Work

Early ISIC Analyses Highlight Tone Bias The first wave of ISIC chal-
lenge papers demonstrated that convolutional networks trained almost exclu-
sively on Fitzpatrick I-I1I images attained dermatologist-level accuracy on simi-
larly light-skinned test sets, yet their performance degraded noticeably on darker
tones [13, 11]. Follow-up studies on ISIC 2018, Fitzpatrick-17k, and DDI quanti-
fied AUROC and sensitivity gaps of 10-35 pp favoring light skin [13, 11, 5]. The
consensus emerging from this literature is that distributional shift in pigmenta-
tion, not just lesion morphology, drives a substantial share of the error.

From Complex Debiasing Schemes to Stratified Operating Points Most
responses to the documented bias have focused on sophisticated data- or model-centric
fixes—balanced resampling, adversarial representation learning, group-adaptive
batch normalization, or fairness-guided pruning [17,25,24]. A conceptually sim-

pler alternative, rooted in the equalized-odds post-processing of Hardt’s 2016
approach [12], is to select a separate decision threshold for each Fitzpatrick group

so that error rates align across tones.

The FPR-TPR Trade-off in Binary Classification Applying stratified
thresholds to binary classification is not trivial: raising sensitivity for an under-served
group often worsens its false-positive rate, and—by impossibility results—one
cannot simultaneously satisfy perfect calibration and equalized odds once preva-
lence differs [14, 18]. Consequently, dermatology researchers have tended to pur-
sue fairness during training [17, 25, 24], where the utility—equity trade-off is per-
ceived as more controllable, rather than post-hoc calibration.
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Segmentation: A Setting Where Tone-Specific Optima Exist Segmen-
tation changes the landscape. Each image yields a dense probability map, and
there is, in principle, a threshold that maximizes Dice or bloU for every sub-
group. If the score distributions for Fitzpatrick V-VI are shifted left—as empir-
ical histograms repeatedly show [1] —a universal cut-off under-segments dark
skin. Calibrating per-tone thresholds can therefore improve both subgroup Dice
and owverall performance, because each group operates closer to its own theo-
retical optimum. This observation motivates the present study, which evaluates
Fitzpatrick-specific thresholding in the clinically consequential task of psoriasis
BSA estimation.

1.3 Clinical Relevance of Precise BSA Estimation

Psoriasis management provides an ideal test-bed for tone-aware segmentation
because small changes in the BSA assessment directly translate to different treat-
ment pathways. The PASI scoring rubric weights percent-involved BSA in each
anatomical region; a 5-10 percentage-point error may erroneously move a patient
into a different disease severity category. In a recent review of machine learning
BSA estimators, skin tone discussion was omitted from all segmentation ap-
proaches [15], with the sole exception that in one study it was shown that error
modes exist where healthy darker skin regions are sometimes mis-classified as le-
sional [10]. Demonstrating that Fitzpatrick-specific thresholding can reduce this
bias would offer a pragmatic, model-agnostic fairness intervention with potential
uses both in clinical trials and photo-based tele-dermatology.

2 Methodology

2.1 Data Collection

We assembled a large publicly available psoriasis dataset by sourcing from six
open dermatology repositories: Derm Atlas Brazil [20], DermlIS [7], DermNet
NZ [22], the Hellenic Dermatology Atlas [6], the Interactive Dermatology Atlas
[23], and Fitzpatrick-17k [11]. Subtypes of psoriasis that were excluded included
pustular variants and isolated nail disease, filtered out by keyword rules and
manual dermatologist review. Duplicates were removed, and patient IDs were
assigned to prevent leakage between train, tune, and test sets. The final dataset
contained 754 psoriasis images from 631 patients.

2.2 Skin-Tone Annotation and Segmentation Labels

Each retained image was independently labeled with a Fitzpatrick type (I-VI) by
a board-certified dermatologist. Pixel-level diseased-skin masks were produced
using the VIA Image Annotator tool [9]. Three assistants (medical student, res-
ident physician, and graduate research assistant) drew initial polygon masks;
a board-certified MD-PhD dermatologist specializing in psoriasis revised every
mask to ensure high quality segmentation masks, especially on difficult cases
such as low contrast lesions on darker skin tones.
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Fig. 1: Examples of high detail manual skin-disease labeling employed in the
study.

Table 1: Per-dataset image counts by Fitzpatrick skin-type

Dataset I II| IITI | IV | V | VI | Total
Brazil 0 21 29| 40| 40 4 115
DermlIS 22| 67 2 31 3 0 97
DermNetNZ 27| 171 68| 32| 7 5 310
Fitzpatrick 17k | 35 | 57 8| 11| 7 1 119
Hellenic 1| 29 16 6 0 0 52
Interactive 0 24 22 41 5 6 61
Column total | 85 | 350 | 145 | 96 | 62 | 16 754

2.3 Data Split

Patient-level IDs were stratified by Fitzpatrick skin tone and, within each stra-
tum, randomly permuted with a fixed seed (0). Stratified samples were then allo-
cated to the training, tuning, and held-out test sets in a 30 / 30 / 40 proportion,
ensuring balanced skin-tone representation and complete patient independence
across partitions.

2.4 Model Architecture and Training Protocol

We benchmark three architectures chosen to represent successive stages in se-
mantic segmentation design while remaining practical for a single-GPU med-
ical study. U-Net [19] is the canonical encoder—-decoder CNN against which
most dermatology work is still compared. Our 256 x 256 implementation (four
down-sampling stages, two 3 x 3 convs per block, batch-norm everywhere) con-
tains 31.1 trainable parameters and therefore serves as a strong, yet widely rec-
ognizable, baseline. Residual U-Net [27] keeps the same overall topology and
feature widths but replaces each plain block with a pre-activation residual pair
plus a squeeze-and-excite (SE) channel attention gate. These lightweight addi-
tions raise the capacity only marginally to 33.1 M parameters, letting us test
whether better optimization and local attention alone can reduce skin-tone bias.
Finally, a 21M parameter reference implementation of SETR-small [28] swaps the
convolutional encoder for a ViT-S/16 backbone (12 transformer layers, 6 heads,
384-D embeddings; positional tokens only) followed by a one-layer up sampling
head. Because the encoder is fully self-attentional and translation-equivariant
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only after training, SETR probes whether long-range context helps fairness on
our limited psoriasis corpus. All three networks are trained with identical 256
X 256 inputs, vanilla SGD optimization with 0.9 momentum, learning rates of
0.01 for UNet and ResUNet (0.0004 for SETR for stability), an identical simple
flip, rotate, and jitter data augmentation scheme, early-stopping watching the
validation bloU with a patience setting of 15, and an identical 3:1 weighted bi-
nary cross entropy + dice loss; thus any performance differences are most likely
attributed to (i) architectural choice and (ii) the use of Fitz-specific versus global
operating points, rather than to confounding hyper-parameter changes.

2.5 Operating-Point Search

To evaluate threshold sensitivity we swept decision cut-offs 7 € [0.001,0.99] in

steps of 0.001 on the tuning split and computed binary Intersection-over-Union
(bIoU) and Dice:

_ 2|M(r)n M| _ () n M|
|M(7)] + M| |M(r)u M|
where M is the ground-truth mask and M(7) = {p > 7 }. We recorded:

Dice(r) U(r)

— Two owerall optima, T,(H]ice and T,};ﬁOU, maximising performance across the
entire tuning set.
— Twelve tone-stratified optima, T;)‘Ce, T;IOU for g € {I,..., VI}, each maximis-

ing the metric within its Fitzpatrick subgroup.

All operating points were then frozen and evaluated once on the unseen test set
to quantify gains from tone-specific calibration.

3 Results

Visual confirmation. Figure 2 plots validation bloU and dice versus threshold
for each tone. The curves illustrate a consistent left-shift for Fitzpatrick VI,
explaining why the universal cut-off under-segments darker skin. The arrows
mark the tone-specific optima chosen during calibration; note that lighter tones
cluster around the global optimum, whereas tone VI requires substantially lower
thresholds to maximize Dice.

Figure 3 illustrates example Fitz VI images that visually illustrate how the
lower Fitz VI optimized operating points captures significantly more of the dis-
eased skin than the globally optimized operating point which is dominated by
lighter skin tones.

Quantitative improvements of Fitzpatrick thresholding In Table 7?7 we
can see applying a single global threshold already yields reasonable performance
for all three networks, but re-tuning the operating point for each Fitzpatrick
subgroup uncovers systematic gains that disproportionately benefit the darkest
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Fig. 2: Data plotted from the validation set. Arrows highlight that the optimal
operating points for Fitz VI is consistently and significantly lower than for other
Fitzpatrick tones. This observation is consistent between architectures: from all-
conv UNet to all-attention SETR, as well as between metrics Dice (top row) and
bloU (bottom row). Fitz tones I-V have optimal operating points around the
aggregate overall optimum which is shown in black.

Table 2: Segmentation performance by skin-tone subset. 7,4: global threshold; 75:
Fitz-specific threshold.

U-Net ResU-Net SETR-small
Metric Subset 74 T A (%) Tq " A (%) Tq TF A (%)

Overall 0.682 — — 0647 — — 0510 — —
Fitz1 0569 0.575 +0.97 0.543 0556 -+2.41 0472 0470 —0.54
Fitz I 0.584 0.584  0.00 0.587 0.585 —0.36 0.512 0.516 +0.66
Dice  FitzIIl 0.649 0.650 +0.05 0.619 0.622 +0.49 0474 0475 +0.26
Fitz IV 0.691 0.657 —4.94 0.723 0.730 +1.03 0597 0.575 —3.71
Fitz V. 0.557 0.563 +1.16 0.593 0.561 —5.26 0.449 0.442 —1.52
Fitz VI 0475 0.590 (+24.13) 0.556 0.656 (+18.01) 0.535 0.594 (+11.04)

Overall 0.558 — — 0514 — — 0311 —
Fitz1 0424 0434 4242 0398 0411 +3.24 0338 0.336 —0.55
FitzII 0457 0457 000 0454 0452 —042 0.373 0.376 +0.92
bloU  FitzIIl 0514 0.514 +0.01 0478 0480 +0.45 0.335 0.338 +0.72
Fitz IV 0.564 0.530 —6.06 0.600 0.613 +2.31 0456 0.438 —4.05
Fitz V. 0414 0424 +237 0455 0428 —6.00 0.311 0.306 —1.74
Fitz VI 0.353 0.464 (+31.46) 0.423 0.527 (+24.63) 0.395 0.463 (+17.14)
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T_FitzVl = 0.050 T_NonStratified = 0.252
RGB (idx 242) Ground truth loU 0.473 loU 0.114
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Fig. 3: The lower Fitz-VI optimized threshold (column 3) captures much more of
the diseased skin than the global optimized operating point (column 4). Inference
examples from U-Net.
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skin tones. Because the Fitzpatrick specific operating points are only exercised
within its own subgroup, the macro-average for both dice and bloU across all
tones moves minimally for every architecture.

4 Discussion

Labor intensive skin-tone annotation to verify equitable stratified per-
formance is no longer a bottleneck. Historically, per-image Fitzpatrick
labels required labour-intensive, subjective grading by board-certified dermatol-
ogists—prohibitive for million-image repositories. The advent of high-accuracy
tone classifiers trained on Fitzpatrick-17k that reach > 95% balanced accuracy in
external validation across a broad cross section of dermatology diseases [11]. In
practice, a lightweight classifier adds minimal inference time and can be applied
retrospectively to every archive or even prospectively on-device.

A practical addition to the fairness toolbox. Per-group threshold calibra-
tion is an immediately deployable fairness lever—orthogonal to, and composable
with, data balancing, representation alignment, FairAdaBN [25], or FairPrune
[24]. We therefore recommend that future skin-segmentation studies:

1. Define in the metadata the skin tone of images in the pre-processing pipeline
via an automated method such as a Fitzpatrick17k classifier.

2. Tune g on a validation split, or ideally on the set of predictions from a
cross-fold validation.

3. Report both overall and tone-stratified metrics at those thresholds.

Either the stratified performance with the global threshold is equitable across
skin tones, or it may not be, in which case Fitzpatrick thresholding provides a
lever to lower the under performance as demonstrated here in psoriasis segmen-
tation. Doing so requires no architectural change, no re-training, and negligible
runtime overhead, yet—as shown here—can significantly increase performance
on the darkest skin tones. Given its simplicity and efficacy, Fitzpatrick-specific
thresholding could become a standard baseline for ISIC fairness tracks and for
any clinical deployment of dermatology segmentation models.
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