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Abstract. Accurate and early diagnosis of malignant melanoma is criti-
cal for improving patient outcomes. While convolutional neural networks
(CNNs) have shown promise in dermoscopic image analysis, they often
neglect clinical metadata and require extensive preprocessing. Vision-
language models (VLMs) offer a multimodal alternative but struggle to
capture clinical specificity when trained on general-domain data. To ad-
dress this, we propose a retrieval-augmented VLM framework that in-
corporates semantically similar patient cases into the diagnostic prompt.
Our method enables informed predictions without fine-tuning and sig-
nificantly improves classification accuracy and error correction over con-
ventional baselines. These results demonstrate that retrieval-augmented
prompting provides a robust strategy for clinical decision support.

Keywords: Vision-Language Model · Retrieval-Augmented Generation
· Melanoma Diagnosis · Classification Task.

1 Introduction

Malignant melanoma is the most common and deadliest form of skin cancer, with
100,640 new cases and 8,290 deaths reported in the United States in 2024 [16].
Early detection significantly improves survival, which emphasizes the need for
accurate and timely diagnosis. Automated diagnostic tools can assist clinicians
in detecting malignant lesions at an earlier stage. This can lead to improved
prognosis and make timely intervention more achievable. While convolutional
neural network (CNN)-based methods have shown promise [10, 11], most rely
solely on dermoscopic images and often require preprocessing steps such as region
of interest (ROI) segmentation, which limits their utility in clinical practice.

To address these limitations, recent efforts have explored multimodal frame-
works that incorporate both images and clinical metadata have gained attention
for improving diagnostic accuracy and personalization. Vision-language models
(VLMs) [13, 2] have emerged as strong candidates for such tasks, as they jointly
process visual and textual data without the need for handcrafted preprocessing.
However, off-the-shelf VLMs that are trained on general-purpose data often fail
to capture domain-specific complexities [5]. Although fine-tuning with clinical
data can mitigate this issue, it requires curated datasets and significant compu-
tational resources. As a result, this approach is often infeasible due to privacy
constraints and institutional variability.
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As an alternative, retrieval-augmented generation (RAG) [12] provides ex-
ternal knowledge-based inference by retrieving similar patient cases and incor-
porating them into prompts. This approach is particularly appealing for clinical
applications, since it enables reasoning without modifying model weights. Previ-
ous studies in content-based image retrieval (CBIR) have shown that case-based
reasoning can support dermatological diagnosis by referencing visually similar
lesions [19, 3]. Building on this idea, our work extends case-based reasoning to a
multimodal context by integrating retrieved image–text pairs into VLM prompts.
This design supports clinical reasoning by reflecting the way how physicians in-
terpret new cases through analogical comparison with prior patient examples.

More specifically, this study proposes a multimodal diagnostic framework
that integrates RAG into a VLM to support more accurate and clinically rel-
evant melanoma classification. We investigate whether retrieved examples im-
prove diagnostic decisions, particularly in correcting false positives and false
negatives. Through comprehensive experiments, we show that our method con-
sistently outperforms conventional classification models in both accuracy and
error correction. Our main contributions are as follows:

• We propose a retrieval-augmented VLM-based diagnostic framework for mela-
noma classification by incorporating image–metadata–label examples into
prompts to improve decision accuracy.

• We evaluate the effects of different metadata serialization strategies and
image encoders on retrieval effectiveness and diagnostic performance.

• We show that the proposed method consistently outperforms conventional
image-based, text-based, and early-fusion baselines across multiple metrics
and architectures, without requiring fine-tuning.

2 Proposed Approach

This section presents a multimodal diagnostic framework that combines a VLM
with RAG to classify melanoma using both dermoscopic images and clinical
metadata. In clinical practice, diagnosis often involves comparing a case with
prior cases that share similar visual features or clinical attributes. This case-
based reasoning improves diagnostic accuracy by using past experience.

Our framework incorporates a retrieval module that searches a database of
dermoscopic images and metadata to find semantically similar cases. These ex-
amples serve as clinical references and provide contextual support for the pre-
diction of the model. By embedding the retrieved cases into the VLM input
prompt, the system emulates the comparative reasoning process used in human
diagnosis. This design addresses the limitations of general-purpose VLMs and
better aligns the model with the specific demands of melanoma classification.
An overview of the architecture is shown in Fig. 1.

Multimodal Embedding and Case Indexing Each training sample includes
a dermoscopic image and associated metadata (e.g., age, sex, and lesion lo-
cation). To process these modalities, we use modality-specific encoders: CNN-
based backbones (e.g., ResNeXt-50 [22], EfficientNet-V2-M [17]) for images and
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Fig. 1: Overview of the proposed retrieval-augmented classification framework
incorporating attribute-value pair-based prompting.

BERT [8] for text. Metadata is serialized into natural language using template-
based sentence transformations (see below) to improve compatibility with lan-
guage models. The resulting image and text embeddings are concatenated into a
single multimodal vector and stored in a FAISS [9] vector database for efficient
approximate nearest neighbor search. This setup enables scalable indexing of
large dermatological datasets and allows seamless updates as new data is added.

Template-Based Sentence Transformations To make structured metadata
compatible with VLMs, we convert patient records into natural language using
predefined templates. We apply three serialization strategies:

• Sentence format: Expresses each field as a simple sentence (e.g., Age is
45, Sex is female.), matching the VLM’s training style.

• Attribute-value pair: Uses compact key-value pairs (e.g., Age: 45, Sex:
Female) to reduce prompt length and improve parsing.

• HTML format: Encodes tabular structure with tags like <table>, <tr>,
<th>, and <td> to retain column semantics.

Semantically-Guided Retrieval At inference time, the query sample (image
and metadata) is encoded with the same modality-specific encoders used to in-
dex the database. We compute dot-product similarity between the query and
database embeddings to retrieve the top-K most similar cases. These examples,
selected based on both visual and clinical similarity, provide contextual support
for VLM prompting. This retrieval introduces domain-specific knowledge with-
out updating model weights and enables adaptation to the target domain. We
found that K = 2 offers the best balance between contextual relevance and noise.

Prompt Construction and VLM Inference To adapt general-purpose VLMs
for binary melanoma classification, we design structured prompts consists of: (1)
instruction specifying the task; (2) K retrieved examples as image–metadata–label
triplets; and (3) the query sample with a classification request.

The frozen VLM processes the prompt and generates a textual response in-
dicating the predicted class. This few-shot design mirrors clinical reasoning by
analogy and leads to better contextual understanding and more reliable pre-
dictions. Unlike early-fusion [18] or naive multimodal concatenation [14], our
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Table 1: Comparison of image(I)-based, metadata(M)-based, early-fusion, zero-
shot VLM, and our proposed framework (bold: the highest performance).

I M Model Serialization Accuracy Balanced Accuracy Precision Sensitivity F1-score TN TP FN FP
✓ - ResNeXt-50 [22] - 0.7380 0.5054 0.2022 0.1316 0.1594 6402 223 1472 880
✓ - EfficientNet-V2-M [17] - 0.6954 0.5061 0.1985 0.2018 0.2001 5901 342 1353 1381

Single - ✓ RF [4] - 0.8156 0.5209 0.6667 0.0472 0.0882 7242 80 1615 40
Modality - ✓ Vicuna 7B v1.5 [23] HTML 0.6547 0.4873 0.1725 0.2183 0.1927 5507 370 1325 1775

- ✓ Vicuna 7B v1.5 Attribute-value pair 0.737 0.5263 0.2294 0.2413 0.2352 5908 409 1286 1374
- ✓ Vicuna 7B v1.5 Sentence 0.6063 0.5152 0.2023 0.3687 0.2613 4818 625 1070 2464
✓ ✓ BERT [8]+ResNeXt-50 HTML 0.8607 0.6557 0.8366 0.3263 0.4694 7174 553 1142 108
✓ ✓ BERT+ResNeXt-50 Attribute-value pair 0.8623 0.6568 0.8536 0.3268 0.4277 7187 554 1141 95

Early-Fusion ✓ ✓ BERT+ResNeXt-50 Sentence 0.8622 0.6589 0.8428 0.3322 0.4765 7177 563 1132 105
with RF ✓ ✓ BERT+EfficientNet-V2-M HTML 0.8501 0.6208 0.8442 0.2525 0.3887 7203 428 1267 79

✓ ✓ BERT+EfficientNet-V2-M Attribute-value pair 0.8501 0.6220 0.8375 0.2555 0.3915 7198 433 1262 84
✓ ✓ BERT+EfficientNet-V2-M Sentence 0.8514 0.6232 0.8546 0.2566 0.3947 7208 435 1260 74
✓ ✓ BERT [8]+ResNeXt-50 HTML 0.6819 0.5079 0.2000 0.2283 0.2132 5734 387 1308 1548
✓ ✓ BERT+ResNeXt-50 Attribute-value pair 0.7040 0.5089 0.2038 0.1953 0.1995 5989 331 1364 1293

Early-Fusion ✓ ✓ BERT+ResNeXt-50 Sentence 0.7029 0.5009 0.1904 0.1764 0.1832 6011 299 1396 1271
with FNN ✓ ✓ BERT+EfficientNet-V2-M HTML 0.7024 0.4967 0.1830 0.1664 0.1743 6023 282 1413 1259

✓ ✓ BERT+EfficientNet-V2-M Attribute-value pair 0.7084 0.5063 0.2001 0.1817 0.1905 6051 308 1387 1231
✓ ✓ BERT+EfficientNet-V2-M Sentence 0.7108 0.5090 0.2050 0.1847 0.1943 6068 313 1382 1214
✓ ✓ LLaVA 7B v1.5 hf [13] HTML 0.5845 0.6113 0.2608 0.6543 0.3729 4138 1109 586 3144

Zero-Shot ✓ ✓ LLaVA 7B v1.5 hf Attribute-value pair 0.7126 0.6128 0.3171 0.4525 0.3729 5630 767 928 1652
VLM ✓ ✓ LLaVA 7B v1.5 hf Sentence 0.5610 0.5658 0.2320 0.5735 0.3303 4064 972 723 3218

✓ ✓ BERT+ResNext-50 HTML 0.7396 0.7202 0.3921 0.6891 0.4998 5471 1168 527 1811
✓ ✓ BERT+ResNext-50 Attribute-value pair 0.8876 0.7970 0.7254 0.6513 0.6864 6864 1104 591 418
✓ ✓ BERT+ResNext-50 Sentence 0.8810 0.7891 0.7027 0.6413 0.6706 6822 1087 608 460

Ours ✓ ✓ BERT+EfficientNet-V2-M HTML 0.7123 0.6746 0.3505 0.6142 0.4463 5353 1041 654 1929
(K = 2) ✓ ✓ BERT+EfficientNet-V2-M Attribute-value pair 0.8491 0.7345 0.6114 0.5504 0.5793 6689 933 762 593

✓ ✓ BERT+EfficientNet-V2-M Sentence 0.8459 0.7294 0.6022 0.4322 0.5706 6675 919 776 607

method maintains modality alignment and exploits the ability of the VLM to
perform implicit multimodal reasoning.

3 Experiment

Dataset We use the SIIM-ISIC 2019 Challenge dataset [20, 6, 7], which includes
29,923 dermoscopic images with clinical metadata. Among them, 5,608 cases are
histopathologically confirmed melanomas. We treat this as a binary classification
task: malignant vs. benign. Each sample includes an image and metadata (age,
sex, and anatomical site). Images are provided in JPEG format and resized to
224×224 RGB. We apply two-stage stratified sampling to preserve class balance:
70% of the data is used for training and 30% for testing. The training set is
further split 80:20 for validation during hyperparameter tuning.

Experimental Setup We evaluate performance under five settings: image-
based, text-based, multimodal early-fusion, zero-shot VLM, and our retrieval-
augmented VLM framework. For image-based models, we fine-tune ResNeXt-
50 [22] and EfficientNet-V2-M [17], both initialized with ImageNet weights.
Training uses the Adam optimizer with binary cross-entropy loss, and hyper-
parameters are tuned via Optuna [1]. For text-based classification, we use Ran-
dom Forest (RF) [4] and 4-bit quantized Vicuna 7B v1.5 [23], implemented with
Scikit-learn [15] and Hugging Face Transformers [21]. In the early-fusion baseline,
we extract image features from the final CNN layer and use the [CLS] token from
the 11th layer of BERT, following the approach in [8]. The two representations
are concatenated and classified using either an RF or a ReLU-activated feedfor-
ward neural network (FNN). Hyperparameters are tuned via Grid Search [15]
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Table 2: Comparison of baseline models and the proposed approach (Ours, K =
2), showing the number of corrected errors (FN/FP corrected as TP/TN) and
the corresponding recovery rate (%). Recovery is defined as the proportion of
corrected errors relative to the total baseline errors (I: Image, M: Metadata).

(a) Performance Comparison Across Different Experimental Settings.

I M Model Serialization Ours (K = 2) Recovery (%)

- ✓ RF [4] - FP 34 85.00
Single - ✓ RF - FN 1035 64.09
Modality - ✓ Vicuna 7B v1.5 [23] Attribute-value pair FP 1258 70.87

- ✓ Vicuna 7B v1.5 Attribute-value pair FN 827 64.31
Early-Fusion ✓ ✓ BERT [8]+ResNeXt-50 [22] Attribute-value pair FP 71 74.74
with RF ✓ ✓ BERT+ResNeXt-50 Attribute-value pair FN 604 52.94
Zero-Shot ✓ ✓ LLaVA 7B v1.5 hf [13] Attribute-value pair FP 1507 91.22
VLM ✓ ✓ LLaVA 7B v1.5 hf Attribute-value pair FN 571 61.53

(b) Performance Comparison Across Different Serialization Methods.

I M Model Serialization Attribute-value pair Recovery (%)

Ours ✓ ✓ BERT [8]+ResNeXt-50 [22] HTML FP 1513 83.55
(K = 2) ✓ ✓ BERT+ResNeXt-50 HTML FN 116 22.01
Ours ✓ ✓ BERT+ResNeXt-50 Sentence FP 113 24.57
(K = 2) ✓ ✓ BERT+ResNeXt-50 Sentence FN 43 7.07

(c) Performance Comparison Across Different Image Encoder.

I M Model Serialization BERT [8]+ResNeXt-50 [22] Recovery (%)

Ours ✓ ✓ BERT+EfficientNet-V2-M [17] Attribute-value pair FP 487 82.12
(K = 2) ✓ ✓ BERT+EfficientNet-V2-M Attribute-value pair FN 325 42.65

or Optuna [1]. For VLM-based experiments, we use the 4-bit quantized version
of LLaVA v1.5 [13]. In the RAG configuration, we construct a FAISS [9] index
containing 16,756 image–text pairs from the training set. For each query, the
top two nearest neighbors (K = 2) are retrieved and inserted into the model
prompt. We empirically evaluate different values of K (K = 1, 2, 3, 4) and find
that K = 2 offers the best trade-off between contextual relevance and noise.

3.1 Quantitative Evaluation

Table 1 summarizes the classification results. We report accuracy, balanced ac-
curacy, precision, sensitivity, F1-score, and confusion matrix components. Given
the class imbalance and the clinical importance of minimizing both false negative
(FN) and false positive (FP), we adopt F1-score as the primary metric.

Single-Modality Models Models using only dermoscopic images or clinical
metadata show limited diagnostic performance. Among image-based methods,
EfficientNet-V2-M achieves the best results, though its performance is affected
by visual noise due to the absence of preprocessing. In text-based models, Vicuna
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(a) Misclassified case by all baselines (LLM, early-fusion, zero-shot VLM) correctly
classified by our method (K = 2).

(b) Comparison of HTML and attribute–value formats within RAG framework (K = 2),
showing better results with attribute–value input.

(c) Comparison of sentence and attribute–value formats, showing improved classification
with attribute–value input.

(d) Impact of image encoder choice (EfficientNet-V2-M vs. ResNeXt-50) using at-
tribute–value format in RAG framework.

Fig. 2: Error cases corrected by our framework with retrieved cases.
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7B v1.5 outperforms RF, likely benefiting from general-domain pretraining. The
RF model struggles to capture patterns effectively due to the limited number
of metadata features. These results suggest that single-modality approaches are
inadequate for accurate melanoma diagnosis and highlight the importance of
multimodal integration.

Multimodal Fusion and Zero-Shot VLM Zero-shot VLM outperforms early-
fusion with FNN due to its use of attention-based mechanisms that capture
cross-modal interactions. In contrast, FNN relies on simple feature concatena-
tion, which limits its ability to represent semantic relationships. Interestingly,
early-fusion with RF achieves better results than zero-shot VLM, indicating that
pretrained VLMs do not fully capture clinical signals. These observations point
to the need for strategies that incorporate domain knowledge and task-specific
examples to improve VLM-based classification.

Proposed RAG Framework Our RAG-based VLM framework achieves the
highest performance across all settings. Using BERT, ResNeXt-50, and attribute-
value pair serialization, it reaches an F1-score of 0.6864, improving by 0.2099
over the best early-fusion model and by 0.3135 over zero-shot VLM. Sensitivity
increases to 0.6513, more than doubling that of early-fusion, while precision
reaches 0.7254. These results demonstrate that retrieval-augmented prompting
provides consistent gains in both accuracy and clinical error correction, while
maintaining a strong balance between precision and recall.

3.2 Qualitative Evaluation

The quantitative results show that the RAG-based VLM framework outperforms
image-based, text-based, early-fusion, and zero-shot VLM models. To better
understand this performance, we qualitatively examine how retrieved examples
contribute to correcting FP and FN that baseline methods fail to resolve.

Error Analysis of Baseline Predictions Each baseline model uses the best-
performing architecture for its modality. Our framework (K = 2) applies BERT
with ResNeXt-50 and attribute–value pair serialization. Table 2a presents re-
covery rates, defined as the proportion of FP and FN errors that our method
correctly reclassifies. Zero-shot VLM achieves recovery rates of 91.22% for FP
and 61.53% for FN. In contrast, early-fusion with RF shows substantially lower
recovery, likely due to limited capacity to model semantic interactions across
modalities. Fig. 2a shows representative cases. In the left column, baseline mod-
els misclassify benign lesions as malignant. In the right, malignant lesions are
predicted as benign. Our method retrieves clinically similar examples based on
sex, age, and anatomical site, and inserts them into the prompt. For instance,
two retrieved benign cases from the same anatomical site (posterior torso) help
correct a prior false positive. This context influences the model’s decision and
leads to more accurate predictions.

Overall, these results suggest that retrieval-based prompting addresses key
limitations of conventional models and supports more reliable clinical reasoning.
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Effect of Input Serialization Format To evaluate the impact of input se-
rialization, we compare three formats: HTML, attribute–value pair, and sen-
tence, using the same configuration (BERT + ResNeXt-50, K = 2). Table 2b
shows recovery rates where FP and FN errors under HTML and sentence for-
mats are corrected to true positive (TP) and true negative (TN) by switching
to attribute–value format.

For HTML input, 83.55% of FP and 22.01% of FN errors are corrected.
In contrast, conversion from sentence format yields 24.57% for FP and 7.07%
for FN. These results suggest that attribute–value input encodes clinical vari-
ables more explicitly. Although HTML preserves the same content, its tag-based
structure may obscure important features during embedding. While sentence
format aligns with VLM training data, its classification performance remains
lower than attribute–value format. Fig. 2b and 2c show representative examples.
In Fig. 2b, the HTML-based model yields a false positive for a benign lesion.
The attribute–value format retrieves benign cases with matching sex and age
and enables correct classification. For the malignant example, the HTML input
produces false negatives, whereas attribute–value input retrieves similar malig-
nant lesions and supports accurate prediction. Fig. 2c presents a false positive
under sentence format that is corrected by attribute–value input, which retrieves
benign cases with matching sex and anatomical site. Its more explicit structure
strengthens contextual alignment and improves classification.

In summary, these results show that structured input formats, especially
attribute–value pairs, better support retrieval-based reasoning by clarifying the
semantic role of each variable.

Effect of Image Encoder Configuration To assess the influence of image
encoder on diagnostic performance, we compare ResNeXt-50 and EfficientNet-
V2-M, using the same text encoder (BERT), input format (attribute-value pair),
and retrieval setting (K = 2). Table 2c shows recovery rates where predictions by
the EfficientNet-V2-M model are corrected by the ResNeXt-50 model. The recov-
ery rate for FPs reaches 82.12%, and for FNs 42.65%, indicating that ResNeXt-
50 is more effective at correcting errors. Fig. 2d presents examples where the
two models produce different outcomes for the same inputs. In the benign case,
EfficientNet-V2-M misclassifies the lesion as malignant. In contrast, ResNeXt-50
retrieves benign cases with similar anatomical site and sex, which results in cor-
rect classification. These retrieved cases show strong alignment with the query
in both spatial and demographic attributes. EfficientNet-V2-M, by comparison,
retrieves cases with lower consistency, which may reduce contextual reliability.
A similar difference appears in the malignant case. EfficientNet-V2-M predicts
FN, whereas ResNeXt-50 retrieves two malignant cases with similar color and
lesion spread, resulting in correct classification. These examples provide clearer
visual evidence that supports the decision of the model.

Altogether, the results suggest that ResNeXt-50 captures visual features rele-
vant to melanoma classification more effectively and provides stronger contextual
alignment in retrieval-based inference.
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4 Conclusion

We presented a retrieval-augmented diagnostic framework that integrates VLMs
with case-based prompting for melanoma classification. The framework improves
diagnostic performance without fine-tuning by retrieving semantically similar ex-
amples and inserting them into the input prompt. Quantitative and qualitative
results show improved contextual reasoning and fewer classification errors. Com-
parisons across serialization formats and encoders confirm the benefit of struc-
tured input and ResNeXt-50 visual features. These findings support retrieval-
augmented prompting as a robust and generalizable strategy for clinical decision
support using pretrained multimodal models. Although the framework shows
promising results, its reliance on a single VLM may limit generalizability across
diverse diagnostic tasks. Future work may expand this approach to multi-class
skin lesion classification and other domains that require multimodal reasoning
and greater model flexibility.
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