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Abstract. In real-world clinical settings, deploying medical AI applica-
tions requires lightweight models that can operate under limited com-
putational resources. For skin lesion segmentation, a crucial step in the
early detection of skin cancer, the key challenge is to develop models
that are not only efficient but also perform reliably with minimal an-
notated data. To address this, we propose a lightweight and efficient
semi-supervised segmentation framework that combines multi-task con-
sistency learning with the representational power of foundation mod-
els.Our method is built on three key components: (1) a dual-network
co-training framework combining a lightweight MobileNet with a strong
ViT-based teacher to balance efficiency and representation power, (2)
a fused mask prompt inspired by multi-task consistency, which com-
bines coarse segmentation masks with boundary-aware Signed Distance
Function (SDF) maps to guide SAM, and (3) a SAM-guided knowledge
distillation strategy, where refined outputs from SAM are used as high-
quality pseudo-labels to train the Main Network on unlabeled data. Ex-
tensive experiments demonstrate that our approach achieves competitive
segmentation performance with significantly reduced annotation effort,
offering a practical solution for semi-supervised medical image segmen-
tation in real-world applications.

Keywords: Medical image segmentation · Semi-supervised learning ·
Segment Anything Model (SAM) · Lightweight models
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1 Introduction

Medical image segmentation is a critical component of many clinical applica-
tions, but acquiring high-quality annotations remains both expensive and time-
consuming as highlighted by Antonelli et al. [1]. Within this domain, skin lesion
segmentation is particularly important for the early diagnosis of skin cancer, as
it helps extract key visual features like lesion shape and boundary, as demon-
strated in Li et al. [9]. To overcome the challenge of limited labeled data, numer-
ous semi-supervised methods for skin lesion segmentation have been proposed,
demonstrating strong performance by effectively leveraging both labeled and
unlabeled images as reported in Nguyen et al. [13].

One of the core ideas in semi-supervised learning (SSL) is consistency reg-
ularization, which encourages models to produce similar predictions when the
same input is perturbed. These methods promote smooth decision boundaries in
low-density regions of the data space. Data augmentation-based methods include
FixMatch [18], which applies weak augmentations to generate pseudo-labels that
supervise predictions on strongly augmented versions of the same image, condi-
tioned on a confidence threshold. Many self-training works by Luu et al., Nguyen
et al and Yang et al. [10,12,25] build on this by adding sharpening techniques and
temporal ensembling to make the pseudo-labels more reliable over time. Other
methods, proposed by Pham et al. [16] and Yu et al. [26], also rely on input per-
turbations with specialized mechanisms, including transformation consistency,
uncertainty weighting, or attention-based confidence, to refine how consistency
regularization is applied.

Beyond perturbation-based consistency, multi-branch models enforce con-
sistency across complementary task-specific outputs. For example, the method
proposed by Li et al. [8] enforces agreement between pixel-wise segmentation
and a shape-aware branch to enhance boundary accuracy. Similar multi-branch
strategies have been explored in fully supervised settings as well Wan et al. [20],
Nguyen et al. [14], where combining pixel-level and structure-level cues has been
shown to enhance segmentation quality. Additionally, in semi-supervised do-
main adaptation, approaches like Ngo et al. [11] extend this idea by promoting
consistency across domains to improve generalization under distribution shifts.
Besides, Pseudo-labeling frameworks play a major role in SSL segmentation.
PseudoSeg [28], CCT [15], CPS [3], and GTA-Seg [7] implement dual-branch
co-training or teacher-student setups to improve pseudo-label stability. Uni-
match [24] aligns predictions under different augmentation strengths. In the
medical domain, DME-FD [13] addresses noise via dual-mask ensemble and fea-
ture discrepancy co-training.

Knowledge distillation (KD), first introduced by Hinton et al. [5], is a train-
ing approach where a student model learns from the predictions of a stronger
teacher model. It has been widely adopted in semi-supervised medical image seg-
mentation to transfer knowledge from well-trained models to weaker ones using
unlabeled data. Recent extensions include collaborative teacher teams by Wang
et al. [21] and mutual distillation between student networks by Xie et al. [23].
A growing trend is to distill knowledge from powerful foundation models. For
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instance, Zhang et al. [27] explores using the Segment Anything Model (SAM)
for semi-supervised segmentation by guiding SAM with domain-specific prompts
and leveraging its outputs as pseudo-labels for training. Similarly, Huang et al. [6]
proposes a Multi-view Co-training framework with a Learnable Prompt Strategy
(LPS) and SAM-induced Knowledge Distillation (SKD), enabling sub-networks
to adapt and learn from SAM’s predictions while reducing noise from incorrect
pseudo-labels.

While recent SSL methods have shown strong performance, many rely on
large, complex models or struggle to produce accurate boundaries both of which
are important for skin lesion segmentation. Newer approaches that use foun-
dation models like SAM are promising, but they often miss the opportunity to
guide SAM using rich multi-task cues such as coarse masks and boundary details.
To address these challenges, we propose a lightweight co-training framework de-
signed for clinical use. Our method combines a fused mask prompt with SAM
to improve boundary accuracy and distills SAM’s refined output into a more
efficient main network.

In this work, we propose a semi-supervised skin lesion segmentation frame-
work that integrates a lightweight Main Network with a foundation model (SAM)
for enhanced supervision. Our main contributions are summarized as follows:

– Lightweight Co-Training Framework: We propose a dual-network train-
ing setup that pairs a lightweight Main Network (MobileNet) with a more
powerful Teacher Network (ViT). This design enables the Main Network to
run efficiently during inference, while still receiving strong supervision dur-
ing training. It makes our framework practical for real-world deployment,
particularly in resource-limited clinical settings.

– Fused Mask Prompt for Boundary-Aware Guidance: Inspired by con-
sistency regularization across multi-task branches, we design a fused prompt
that combines coarse semantic predictions with fine-grained boundary infor-
mation. Specifically, we fuse the Main Network’s initial segmentation mask
and its corresponding Signed Distance Function (SDF) map into a single
mask prompt. This unified representation captures both region-level confi-
dence and structural contour cues, offering SAM a more holistic input for
downstream refinement.

– SAM-Guided Knowledge Distillation: Leveraging the fused mask prompt,
we introduce a SAM-guided distillation strategy. The task-aware prompt is
passed into SAM, which produces a refined segmentation output. This out-
put acts as a high-quality pseudo-label for training the Main Network on
unlabeled data. By incorporating SAM’s structured knowledge, the Main
Network learns to generate more accurate and boundary-aligned predictions.

2 Methodology

Overview We adopt a semi-supervised learning framework for lesion segmenta-
tion, where the dataset is divided into two subsets: a labeled set Dl = {(xi, yi)}Nl

i=1,
in which each image xi is annotated with a corresponding segmentation mask
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yi; and an unlabeled set Du = {xj}Nu
j=1, which contains only raw input images

without annotations.
Our architecture consists of three main components: (1) a lightweight Main

Network based on MobileNet for efficient segmentation; (2) a powerful Teacher
Network, built upon a ViT backbone and augmented with SAM, to generate
high-quality pseudo-labels; and (3) a structured training pipeline that enables
interaction between the two. As shown in Figure 1, the Main Network performs
dual-task segmentation by predicting both binary masks and Signed Distance
Function (SDF) maps. These outputs are fused to create task-aware prompts
that guide the SAM module. SAM then refines the predictions and provides
supervision signals back to the Main Network.

Fig. 1. Overview of our proposed semi-supervised segmentation framework.
The Main Network (MobileNet) jointly predicts segmentation masks and Signed Dis-
tance Function (SDF) maps. These are fused into a mask prompt that guides the
SAM decoder. SAM refines the predictions and provides high-quality pseudo-labels
via knowledge distillation to train the Main Network. The Teacher Network (ViT) of-
fers additional supervision, while only the Main Network is used at inference time for
lightweight deployment.

2.1 Dual-Output Semi-Supervised Framework

Dual-Output Head with SDF Representation Following [2], both the Main
and Teacher networks employ a dual-output prediction head. For each input
image, they output:(1) a binary segmentation mask for identifying semantic
regions, (2) a Signed Distance Function (SDF) map for capturing fine-grained
boundary geometry.

The SDF representation encodes the distance of each pixel to the nearest
object boundary. Given a binary mask Y , the SDF at each pixel x is defined as:
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ϕY (x) =


−miny∈∂VY

∥x− y∥, if x ∈ V in
Y ,

0, if x ∈ ∂VY ,

+miny∈∂VY
∥x− y∥, if x ∈ V out

Y ,

where ∂VY , V in
Y , and V out

Y denote the boundary, interior, and exterior of
the segmentation region, respectively. This continuous representation enables
the network to model object contours more accurately and reason about spatial
structure.
Dual-Task Consistency and Knowledge Distillation To jointly learn se-
mantic and geometric cues, the Main Network is trained with a dual-task ob-
jective: it predicts both a segmentation mask and an SDF map. This enforces
consistency between region classification and boundary localization, encouraging
the network to align its outputs both spatially and structurally. For unlabeled
data, both the Main and Teacher networks process the same input image. The
Teacher generates high-quality pseudo-labels consisting of a binary mask and
an SDF map, which serve as supervision targets for the Main Network. This
knowledge distillation process enables the Main Network to mimic the Teacher’s
predictions, benefiting from both region-based and geometry-aware guidance.
Fused Mask Prompt Generation. Once the Main Network produces its seg-
mentation mask and SDF map, these two outputs are fused into a single mask
prompt. The binary mask provides region-level confidence, while the SDF intro-
duces detailed boundary information. This fused prompt forms a task-specific,
enriched input used to guide the SAM decoder more effectively.

2.2 Learnable Prompt for SAM Using Fused Mask

Following Huang et al. [6] and Zhang et al. [27], the SAM decoder generates
segmentation masks conditioned on prompts (e.g., points, boxes, masks) and
image features. To enhance this process, we introduce a lightweight decoder ψ(·)
that transforms the SAM encoder feature map Z ∈ RB×D×H×W into dense
learnable prompts: Pb = ψ(Z;Θm), where Θm are the decoder parameters and
Pb ∈ RB×Nb×L represents the output prompt tokens.

To construct the final prompt for SAM, we fuse the Main Network’s predicted
binary mask and Signed Distance Function (SDF) map. This fused signal, to-
gether with Pb, is fed to the SAM decoder: Ŷs = Fs(Pb, Ŷf ;Θs),

where Ŷf is the prior prediction and Θs denotes the decoder parameters.
To support this prompting strategy, we integrate an adapter module from [22]

for decoder fine-tuning. The segmentation loss is defined as:

Lsam = LSEG(Ŷs, Y
l). (1)

2.3 SAM-guided knowledge distillation

Inspired by [6], we adopt the knowledge distillation framework from [5] to trans-
fer supervision from SAM to the Main Network. Specifically, we use a temperature-
scaled softmax to obtain softened probability maps:
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Ŷ c
T =

exp(q̂c/T )∑
c exp(q̂c/T )

, (2)

where q̂c is the SAM logit for class c, and T is a temperature parameter that
controls the distribution’s smoothness.

Soft predictions from both SAM (teacher) and the Main Network (student)
are computed, and the distillation loss is defined via KL divergence:

Lkd = KL(ŶT , Ŷ
main
T ), (3)

where ŶT and Ŷ main
T are the temperature-softened outputs from SAM and the

Main Network, respectively. The SAM model remains frozen, and gradients are
only applied to the Main Network.
In summary, our method leverages semantic and geometric cues under a semi-
supervised setup. The Main Network jointly predicts binary masks and SDF
maps, supervised by pseudo-labels from the SAM-enhanced Teacher. The fused
outputs form a prompt that guides SAM refinement, creating a feedback loop
that improves learning efficiency. This design supports accurate segmentation
with limited labels, while remaining lightweight and deployment-friendly.

3 Experiment

3.1 Dataset

We evaluated our framework on two widely used skin lesion segmentation datasets
ISIC-2018 and HAM10000 under a semi-supervised learning setup. To simulate
low-annotation scenarios, only 2%, 4%, or 8% of the training data was labeled,
with the remainder treated as unlabeled. All experiments followed a 5-fold cross-
validation protocol. The ISIC-2018 dataset [4] consists of 3,694 dermoscopic im-
ages, of which 2,955 were used for training and 739 for validation. The HAM10000
dataset [19] includes 10,015 images, split into 8,012 training and 2,003 validation
samples.

3.2 Methods Under Comparison

To evaluate the effectiveness of our proposed lightweight SAM-assisted segmenta-
tion framework, we compare it against six representative state-of-the-art semi-
supervised segmentation methods: PseudoSeg [28], CCT [15], CPS [3], GTA-
Seg [7], Unimatch [24], and DME-FD [13]. In addition, we include comparisons
with methods that incorporate SAM for semi-supervised segmentation, such as
SemiSAM [27].

3.3 Evaluation Metrics

We evaluate segmentation performance using Dice, IoU, Sensitivity, and Speci-
ficity. Dice and IoU measure the overlap between predicted and ground truth
masks. Sensitivity assesses how well lesion areas are detected, while Specificity
indicates how well non-lesion areas are excluded.
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4 Results

Table 1. Segmentation performance on ISIC-2018 under 2% and 4% labeled data
settings. The SupOnly row reports results using fully supervised training.

Method
Data (%) Metrics

Label | Unlabel Dice (%) ↑ IoU (%) ↑ Sensitivity (%) ↑ Specificity (%) ↑

SupOnly 2% 0% 74.65 ±2.92 60.81 ±2.99 76.16 ±2.44 93.38 ±3.01
4% 0% 77.23 ±0.48 65.35 ±0.56 79.53 ±1.37 95.10 ±0.59
8% 0% 82.28 ±0.61 70.66 ±0.85 81.35 ±0.42 96.12 ±0.21

100% 0% 87.66 ±0.93 78.49 ±1.38 87.11 ±1.05 96.90 ±0.35
PseudoSeg 79.76 ±2.11 67.16 ±2.77 76.65 ±3.72 96.26 ±0.83
CCT 78.66 ±2.02 65.80 ±2.63 77.17 ±4.15 95.56 ±0.69
CPS 79.61 ±1.66 67.04 ±2.28 78.43 ±4.64 95.52 ±1.04
GTA-Seg 2% 98% 77.33 ±2.20 64.21 ±2.59 80.04 ±3.87 93.37 ±2.00
Unimatch 80.03 ±2.04 67.55 ±2.71 78.46 ±4.74 95.84 ±1.50
DME-FD 80.07 ±1.75 67.62 ±2.37 78.97 ±3.51 95.69 ±0.58
Ours 83.44 ±1.91 68.97 ±2.50 80.67 ±3.79 97.01 ±0.72
PseudoSeg 81.77 ±0.66 71.18 ±1.03 81.98 ±3.13 96.37 ±0.85
CCT 80.96 ±1.11 68.95 ±1.41 79.75 ±1.68 95.93 ±0.28
CPS 80.89 ±0.91 70.31 ±1.07 82.08 ±2.35 95.67 ±0.96
GTA-Seg 4% 96% 80.83 ±0.80 70.03 ±1.07 82.54 ±2.35 94.64 ±1.46
Unimatch 81.41 ±1.22 69.46 ±1.58 79.50 ±1.76 96.34 ±0.56
DME-FD 82.06 ±0.69 71.54 ±1.04 82.87 ±1.58 96.23 ±0.36
Ours 85.33 ±0.72 73.61 ±0.98 84.01 ±1.21 96.91 ±0.60

Quantitative Results on ISIC-2018: Table 1 shows that our method
achieves the highest Dice (83.44%, 85.33%) and IoU (68.97%, 73.61%) scores
under both 2% and 4% labeled settings, outperforming all semi-supervised. It
also leads in sensitivity and specificity, notably surpassing the fully supervised
model trained with 8% labels, demonstrating its strength in low-label regimes.

Quantitative Results on HAM10000: As shown in Table 2, our method
consistently outperforms semi-supervised baselines across both 2% and 4% la-
bel settings, achieving Dice scores of 91.02% and 91.56%, and IoU scores of
83.02% and 83.81%. It also records the highest sensitivity (90.02%) and speci-
ficity (97.82%), outperforming fully supervised baselines with more labeled data.
Table 3 presents a broader comparison across three key categories: (1) the su-
pervised baseline using Unet [17] trained on 100% labeled data, (2) the semi-
supervised baseline DME-FD [13], and (3) the SAM-enhanced semi-supervised
method, SemiSAM [27]. Despite using only 4% labeled data, our method achieves
the highest Dice (85.33%) and IoU (73.61%) scores. At the same time, it main-
tains the smallest model size (2.9M parameters) and the fastest inference speed
(0.02s). These results highlight that our approach not only delivers strong seg-
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Table 2. Segmentation performance on HAM10000 under 2% and 4% labeled data
settings. The SupOnly row reports results using fully supervised training.

Method Data (%) Metrics
Label | Unlabel Dice (%) ↑ IoU (%) ↑ Sensitivity (%) ↑ Specificity (%) ↑

SupOnly 2% 0% 88.15 ±0.21 78.90 ±0.31 88.37 ±0.72 95.72 ±0.27
4% 0% 89.59 ±0.07 81.24 ±0.12 88.58 ±0.97 96.80 ±0.40
8% 0% 91.46 ±0.22 84.33 ±0.37 91.01 ±0.29 97.17 ±0.06

100% 0% 93.54 ±0.25 87.92 ±0.42 93.30 ±0.07 97.80 ±0.22
PseudoSeg 90.02 ±0.17 81.94 ±0.28 88.18 ±1.32 97.29 ±0.51
CCT 89.93 ±0.10 81.79 ±0.15 88.54 ±0.86 97.09 ±0.30
CPS 89.94 ±0.14 81.81 ±0.23 87.95 ±0.48 97.35 ±0.28
GTA-Seg 2% 98% 89.55 ±0.32 81.17 ±0.54 88.89 ±0.70 96.60 ±0.09
Unimatch 89.66 ±0.15 81.35 ±0.26 87.89 ±0.38 97.15 ±0.31
DME-FD 90.45 ±0.17 82.65 ±0.27 88.74 ±0.83 97.39 ±0.44
Ours 91.02 ±0.21 83.02 ±0.32 89.00 ±0.67 97.91 ±0.35
PseudoSeg 90.97 ±0.39 83.21 ±0.64 89.11 ±0.77 97.49 ±0.45
CCT 90.64 ±0.53 82.97 ±0.86 89.08 ±0.94 97.39 ±0.15
CPS 90.76 ±0.51 83.17 ±0.84 89.20 ±0.54 97.44 ±0.19
GTA-Seg 4% 96% 90.86 ±0.19 83.34 ±0.31 89.74 ±0.69 97.24 ±0.32
Unimatch 90.32 ±0.44 82.43 ±0.73 88.93 ±1.29 97.20 ±0.61
DME-FD 91.13 ±0.30 83.79 ±0.50 90.05 ±0.43 97.33 ±0.08
Ours 91.56 ±0.37 83.81 ±0.52 90.02 ±0.60 97.82 ±0.12

Table 3. Comparison with SemiSAM methods on ISIC-2018, where SemiSAM denotes
approaches that incorporate SAM for semi-supervised segmentation.

Method
Data (%) Metrics

Params (M) Speed (s)
Label | Unlabel Dice ↑ IoU ↑

Unet (SupOnly) 100% 0% 0.7723 ± 0.0048 0.6535 ± 0.0056 7.8 0.8

DME-FD 0.8206 ± 0.0069 0.7154 ± 0.0104 41.4 1.2

SemiSAM 4% 96% 0.8412 ± 0.0110 0.7213 ± 0.0149 7.8 0.8

Ours 0.8533 ± 0.0072 0.7361 ± 0.0098 2.9 0.02

mentation accuracy, but also meets the requirements of lightweight, real-time
deployment in clinical environments.

5 Conclusion

We present a semi-supervised segmentation framework that integrates lightweight
networks with SAM for efficient and accurate lesion segmentation. By jointly pre-
dicting masks and SDF maps, the Main Network captures both semantic and
boundary cues. These are fused into prompts to guide SAM, enabling a closed-
loop distillation process that improves learning under limited labels. The design
ensures strong performance while remaining practical for clinical deployment.
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