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Abstract. Deep learning models for skin disease classification require
large, diverse, and well-annotated datasets. However, such resources are
often limited due to privacy concerns, high annotation costs, and insuffi-
cient demographic representation. While text-to-image diffusion proba-
bilistic models (T2I-DPMs) offer promise for medical data synthesis, their
use in dermatology remains underexplored, largely due to the scarcity of
rich textual descriptions in existing skin image datasets. In this work, we
introduce LesionGen, a clinically informed T2I-DPM framework for der-
matology image synthesis. Unlike prior methods that rely on simplistic
disease labels, LesionGen is trained on structured, concept-rich dermato-
logical captions derived from expert annotations and pseudo-generated,
concept-guided reports. By fine-tuning a pretrained diffusion model on
these high-quality image-caption pairs, we enable the generation of real-
istic and diverse skin lesion images conditioned on meaningful dermato-
logical descriptions. Our results demonstrate that models trained solely
on our synthetic dataset achieve classification accuracy comparable to
those trained on real images, with notable gains in worst-case subgroup
performance. Code and data are available here.

Keywords: Synthetic Data Generation - Text-to-Image Diffusion Mod-
els - Dermatology - Skin Lesion Classification.

1 Introduction

Deep learning (DL) has revolutionized medical image analysis, offering unprece-
dented accuracy in disease detection [24] and classification [2/4U3I5IT0I8]. How-
ever, these models are inherently data-hungry, requiring vast amounts of high-
quality, diverse training images to generalize well [9TI]. In dermatology, this
need is particularly acute because skin disease classification relies on nuanced
visual cues that can vary across demographics, lighting conditions, and disease
progression. Yet, real-world medical datasets are often limited due to privacy con-
cerns, ethical restrictions, and the high cost of expert annotations. The scarcity
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of diverse, labeled skin disease images presents a significant barrier to developing
robust DL models.

To address this issue, synthetic data generation has emerged as a promising
solution, with generative models offering a powerful tool for augmenting medical
datasets. Among these, diffusion probabilistic models (DPMs) [13] have demon-
strated outstanding capabilities in generating high-fidelity images across diverse
domains, including image synthesis [I4I25], translation [16], classification [I7]
and segmentation [23]. Particularly noteworthy are text-to-image diffusion mod-
els (T2I-DPMs), which leverage natural language descriptions to generate realistic
images aligned with specific conditions, achieving state-of-the-art performance.
For instance, de Wilde et al. [7] adapted pre-trained T2I-DPMs to medical imag-
ing through textual inversion, successfully generating diagnostically accurate
images across a range of modalities. Similarly, Chen et al. [6] introduced Eye-
Diff, a T2I-DPM trained on a variety of ophthalmic datasets, demonstrating its
effectiveness in generating images of rare eye diseases to address the critical issue
of data imbalance in diagnostic models.

However, despite the promising potential of T2I-DPMs in medical imaging,
their application to dermatology faces a significant limitation: unlike other med-
ical modalities, where images are typically accompanied by detailed textual re-
ports [22], skin disease datasets often lack such structured descriptions. This ab-
sence of rich textual metadata makes it challenging to fully leverage T2I-DPMs for
data synthesis in dermatology. To date, only two studies have applied T2I-DPMs
to skin lesion synthesis [I9UI], but both relied on overly simplistic textual de-
scriptions limited to disease labels; e.g., ‘an image of <label-only>’, where
<label-only> is replaced by the name of the corresponding skin disease. This
approach is insufficient, as it fails to capture the rich, nuanced visual features that
define each condition, such as variations in texture, color, shape, and progres-
sion. These features are critical for accurate lesion classification and diagnosis,
and without them, the generated images lack the diversity and specificity needed
to enhance model performance effectively.

In this work, we propose LesionGen, a novel T2I-DPM framework for concept-
driven skin image synthesis, primarily aimed at improving worst-case perfor-
mance across subgroups. Our method generates rich image—caption pairs by
producing structured, clinically meaningful descriptions of dermatological im-
ages. Specifically, we employ two concept-based text generation strategies to
create these captions: (1) a strategy based on expert dermatological descrip-
tions, where each image is annotated with seven clinically relevant diagnostic
attributes; and (2) a strategy using pseudo-generated dermatological descrip-
tions, where a vision-language model is guided to produce detailed medical text
conditioned on these dermatological concepts. These concept-grounded captions
are paired with their corresponding images to form high-quality training data
for LesionGen, enabling conditional image generation. Our results demonstrate
that models trained solely on this synthetic data achieve competitive classifica-
tion accuracy, with notable improvements in worst-case subgroup performance.
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Fig. 1. Overview of LesionGen. Lesion images are paired with either expert derma-
tological descriptions transformed into text by an LLM, or pseudo-captions generated
from image features using a VLM, forming a unified multimodal dataset. A LoRA-
tuned diffusion model is trained on the multimodal dataset, and the trained model
generates diverse, class-consistent images, which are then evaluated in the downstream
classification task.

2 Methodology

We propose LesionGen, a dermatology image synthesis using a fine-tuned T2I-DPM.
As shown in Fig. the framework constructs image—caption pairs from ex-
pert annotations and pseudo-generated descriptions, then fine-tunes the diffusion
model on these pairs for image generation and downstream evaluation.

2.1 Training Data Construction

Image—Caption Pairs with Expert Dermatological Descriptions. To
construct clinically grounded pairs, we use the D7P dataset [I5], which con-
tains 1,926 dermoscopic images spanning six diagnostic classes: nv, mel, bce, df,
bkl, and vasc. Each image is paired with structured metadata describing seven
clinically meaningful attributes (referred to as concepts), including pigmenta-
tion, lesion elevation, and structure. To transform this metadata into natural
language, we prompt an LLM model with a structured template (Fig. top),
generating dermatologist-style captions that serve as conditioning text for diffu-
sion training.

Image—Caption Pairs with Pseudo-Generated Dermatological Descrip-
tions. The HAM10000 (HAM) dataset [2I] is a widely used benchmark in der-
matology, comprising over 10,000 dermoscopic images across seven diagnostic
classes (the six from D7P, plus akiec). Although HAM includes basic metadata,
such as patient age, gender, lesion type, and anatomical location, it lacks cor-
responding textual descriptions and, critically, does not provide annotations for
key dermatological concepts, as in D7P, that are important to clinical diagnosis.
To address this, we leverage a VLM model to generate structured dermatological
descriptions that draw on both the available metadata (e.g., lesion label, patient
age, gender) and the visual content of each image. Rather than prompting the
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Fig. 2. Prompt templates and example outputs for dermatological caption generation
from (top) expert-annotated D7P data and (bottom) pseudo-generated HAM data.

VLM to produce free-form clinical descriptions, we craft targeted prompts that
explicitly instruct the model to describe each image using the seven diagnostic
concepts defined in the D7P dataset (e.g., pigmentation, elevation, structure).
Although these attributes are not explicitly annotated in HAM, our prompt-
ing strategy enables the VLM to generate clinically meaningful, concept-based
descriptions that enhance the dataset’s utility for diffusion model fine-tuning.
Fig. 2} bottom illustrates the prompting strategy and an example output.

2.2 Diffusion Model Fine-Tuning

We fine-tune a pretrained DPM using a combined set of expert and pseudo-
generated image—caption pairs from D7P and HAM. The resulting model, LesionGen,
is trained to generate realistic and diverse skin lesion images conditioned on der-
matological descriptions. To improve alignment between medical language and
visual features, we leverage CLIP for text conditioning and apply Low-Rank
Adaptation (LoRA) for efficient fine-tuning. Formally, LesionGen samples an
image zo given a text embedding ¢ as xg ~ pa(xo | ¢), where ¢ encodes the
structured dermatological description.

3 Experiments and Results

We evaluate how synthetic skin lesion images generated by LesionGen affect
downstream classification performance. Specifically, we ask: (1) How effective
are these synthetic images for training a CNN classifier (e.g., ResNet18 [12])?
and (2) How does prompt design influence the utility of generated images?

3.1 Experimental Setup

We fine-tune a pretrained Stable Diffusion v1.4 model [I8] on our multimodal
dataset of image—caption pairs (see Section , which makes our LesionGen
model. In our main experimental setting, we use rich and balanced prompts
as input to LesionGen during image generation. We refer to this configuration as
LesionGen-R&B. Rich refers to the prompts being identical to those used during
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diffusion model fine-tuning, whereas balanced refers to addressing class imbal-
ance during image generation by ensuring each lesion class is associated with an
equal number of prompts. Since some classes are underrepresented in the original
dataset, we use GPT-40 to generate paraphrased versions of existing prompts
for those classes. These paraphrases retain the original clinical meaning while
introducing linguistic variation; e.g., turning ‘A nodular melanoma featuring
diffuse irregular pigmentation, irregular dots’into ‘A nodular melanoma
showing uneven pigmentation, scattered dots’. Using LesionGen-R&B, we
generate a class-balanced synthetic dataset with 500 samples per class. A ResNet18
classifier is then trained on different combinations of the synthetic and real data,
and evaluated on held-out real test sets from D7P and HAM.

3.2 Baseline and Competing Method

We compare LesionGen-R&B against two baselines. The first is a real-only
(upper bound) configuration, where the ResNet18 classifier is trained solely
on real images. The second is a prior SOTA method [I], referred to as p-SOTA,
in which the diffusion model is both fine-tuned and sampled using only static
prompts that only include the label (e.g., melanoma) without any descriptive
captions.

3.3 Implementation Details

Prompt Generation. We use GPT-40 in two modes: text-only for D7P (from
structured metadata) and vision-language for HAM (using base64-encoded im-
ages with structured instructions). Prompts are generated with temperature 0.3
and a 77-token limit to comply with CLIP’s tokenization limits.

Diffusion Model Fine-Tuning. We use Stable Diffusion v1.4, pretrained on
the LAION-2B dataset [20], and fine-tune it using LoRA (Low-Rank Adaptation)
on our image-caption dataset. The LoRA training uses a rank of 64, learning rate
of le-5, and a constant scheduler. Training is performed for 15,000 steps using
mixed precision (fpl6), gradient checkpointing, and image augmentations like
cropping and horizontal flipping. The output resolution is 256 x256. We qualita-
tively monitor progress by evaluating validation prompts every five epochs.
Downstream Classification. The downstream classifier is a ResNet18 trained
from scratch. Input images are resized to 224x224, normalized with a mean
and standard deviation of 0.5, and randomly flipped during training. We use
stochastic gradient descent with momentum 0.9, initial learning rate 0.01, and
step decay (factor 0.1 every 10 epochs). Training uses a batch size of 32 and
early stopping with patience of 5 epochs. Our code is implemented in PyTorch
using the HuggingFace Diffusers library and OpenAl APIs.

3.4 Main Results

We train the ResNet18 model on a combined dataset consisting of up to 250 real
images per class (when available), supplemented with synthetic images gener-
ated by LesionGen-R&B to reach a total of 500 training samples per class. This
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Table 1. Classification performance on the D7P test set. We report overall accuracy
and per-class precision. The best results are bolded in green-shaded cells.

Experiment Overall Accuracy bcc bkl df mel nv vasc

p-SOTA (synth-treal) 0.450 0.333 0.125 0.250 0.627 0.712 0.250

real-only 0.650 0.214 0.333 0.000 0.636 0.678 0.000
Ours

LesionGen-R&B (synth-+real) 0.653 0.188 0.316 0.500 0.658 0.721 0.251

Table 2. Classification performance on the HAM test set. We report overall accuracy
and per-class precision. The best results are bolded in green-shaded cells.

Experiment Overall Accuracy akiec bcc bkl df mel nv  vasc

p-SOTA (synth-real) 0.587 0.231 0.364 0.343 0.077 0.313 0.954 0.434

real-only 0.737 0.273 0.488 0.527 0.000 0.594 0.812 1.000
Ours

LesionGen-R&B (synth-real) 0.756 0.375 0.421 0.538 0.418 0.622 0.807 0.315

setup is referred to as (synth-real). The classification performance measured
by overall accuracy and per-class precision on the D7P and HAM test sets is
reported in Tables [I] and [2] respectively.

On the D7P test set (Table[I]), the classifier trained on LesionGen-R&B-
generated data achieves the highest overall accuracy (65.3%), slightly outper-
forming the real-only model (65.0%) and significantly surpassing the p-SOTA
baseline (45.0%). Beyond overall accuracy, our method yields major improve-
ments in worst-class performance. Notably, the precision for the df class increases
from 0.000 (real-only) and 0.250 (p-SOTA) to 0.500 with LesionGen-R&B, demon
strating that our rich and balanced generation strategy enables the classifier
to recover performance on previously underrepresented classes. Additionally,
LesionGen-R&B provides the highest precision in 4 out of 6 classes, including
mel and nv, which are critical in clinical diagnosis.

On the HAM test set (Table [2), the classifier achieves the best overall
accuracy (75.6%) with our approach, outperforming the real-only (73.7%) and
p-SOTA (58.7%) scenarios. The improvements in rare or challenging classes are
particularly notable: df improves from 0.000 (real-only) and 0.077 (p-SOTA) to
0.418 with our method, and akiec rises from 0.273 to 0.375. Our method also
leads to the best precision in 5 out of 7 classes, showing that LesionGen-R&B-
generated data improves class-wise consistency without overfitting to majority
classes. While vasc and nv show a slight drop compared to real-only, they remain
strong overall, and this trade-off results in a more balanced and robust classifier.

3.5 Ablation Studies

We conduct ablation studies to answer three questions: (A) Can synthetic data
alone yield strong performance? (B) What is the impact of prompt balancing
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Table 3. Ablation study results on the D7P test set, reporting overall accuracy and
per-class precision. The best results in each ablation are bolded in green-shaded cells.

Experiment Overall Accuracy bcc bkl df mel nv vasc
Ablation A: Impact of Using Synthetic Data Alone

p-SOTA (synth only) 0.446 0.056 0.113 0.000 0.636 0.715 0.111

LesionGen-R&B (synth only) 0.551 0.100 0.143 0.000 0.652 0.690 0.056
Ablation B: Impact of Removing Prompt Balancing

LesionGen-R (synth only) 0.577 0.000 0.250 0.059 0.623 0.651 0.050

LesionGen-R (synth+real) 0.611 0.250 0.067 0.000 0.596 0.670 0.125

Ablation C: Impact of Using Static, Label-Only Prompts
LesionGen-S (synth only) 0.324 0.000 0.047 0.028 0.280 0.692 0.067
LesionGen-S (synthreal) 0.637 0.077 0.222 0.300 0.597 0.733 0.300

Table 4. Ablation study results on the HAM test set, reporting overall accuracy and
per-class precision. The best results in each ablation are bolded in green-shaded cells.

Experiment Overall Accuracy akiec bcc bkl df mel nv vasc
Ablation A: Impact of Using Synthetic Data Alone

p-SOTA (synth only) 0.315 0.009 0.126 0.130 0.000 0.236 0.978 0.091

LesionGen-R&B (synth only) 0.524 0.145 0.188 0.210 0.045 0.489 0.681 0.080
Ablation B: Impact of Removing Prompt Balancing

LesionGen-R (synth only) 0.428 0.000 0.078 0.169 0.000 0.164 0.927 1.000

LesionGen-R (synthreal) 0.585 0.230 0.389 0.312 0.000 0.298 0.938 0.475

Ablation C: Impact of Using Static, Label-Only Prompts
LesionGen-S (synth only) 0.176 0.011 0.211 0.068 0.000 0.214 1.000 0.000
LesionGen-8 (synth+real) 0.608 0.239 0.370 0.405 0.065 0.326 0.942 0.512

on class-wise and overall accuracy? and (C) How much does prompt enrichment
improve results over static, label-only prompts?

Ablation A: Impact of Using Synthetic Data Alone. In ablation study
A, we remove all real training images and train the ResNet18 model solely on
synthetic data generated by either p-SOTA or LesionGen-R&B. As shown in Ta-
bles [3| and [4] this leads to a clear drop in both overall accuracy and worst-class
precision compared to the synth+real setting (Tables 1| and . For instance, on
the HAM dataset, training on p-SOTA synthetic images results in just 31.5%
accuracy, whereas synthetic images from LesionGen-R&B yield a significantly
higher 52.4%. While performance still falls short of configurations that include
real data, these results indicate that our concept-driven generation approach pro-
duces higher-quality and more informative samples than prior methods. Overall,
this ablation confirms that synthetic data alone is not sufficient, but can be
highly effective when used in combination with real samples.

Ablation B: Impact of Removing Prompt Balancing. In this ablation, we
generate synthetic data using rich, concept-guided prompts but without applying
prompt balancing for underrepresented classes. As shown in Tables [3] and [ re-
moving balancing results in a decline in overall accuracy and highly inconsistent
class-wise performance, particularly when compared to the full LesionGen-R&B
setting (Tables|l|and [2)) where balancing was applied. Furthermore, the classifier
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Fig. 3. Examples of synthetic skin lesion images generated from LesionGen-R&B (top)
and p-SOTA (bottom) across six classes.

performs well on majority classes; e.g., on HAM, precision for nv reaches 93.8%
in the synth+real setting, and vasc reaches 100% even with synthetic data alone.
However, performance on minority classes could collapse entirely; e.g., df.

Ablation C: Impact of Using Static, Label-Only Prompts. Finally, we
test the necessity of the rich prompts by replacing them with static, label-only
prompts. In the synth-only setting, performance deteriorates markedly, with ac-
curacy dropping to 32.4% on D7P (Table[3) and 17.6% on HAM (Table [4)), with
multiple classes exhibiting zero or near-zero precision. Even in the synth+real
setting, performance lags behind the rich and balanced prompts configuration
(Tables|I|and , demonstrating that label-only prompts lack the semantic rich-
ness needed to guide the diffusion model toward clinically meaningful generation.

3.6 Visualization Results

Fig. [3|shows samples from LesionGen-R&B (top) and p-SOTA (bottom). Despite
visual similarity, our method’s superior classification performance suggests it
captures subtle, clinically relevant features beyond human perception.

4 Conclusion

In this work, we demonstrate the effectiveness of combining text-to-image dif-
fusion models with concept-guided dermatological prompts for generating high-
quality synthetic skin lesion images. Unlike prior approaches that rely on sim-
ple label-based conditioning, our method leverages rich, structured descriptions
aligned with clinical concepts, and balances class representation through prompt
paraphrasing. This design enables the generation of semantically diverse and
class-balanced datasets that complement real-world dermatology benchmarks.
Training a ResNet18 on LesionGen’s outputs significantly boosts classification
performance, especially for underrepresented groups, outperforming the base-
lines. Future work includes expanding to skin tone diversity, interactive refine-
ment, and multi-modal conditioning.
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