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Abstract. Skin cancer is among the most prevalent and potentially deadly can-
cers worldwide, with early detection essential for effective treatment, particularly
for aggressive types such as melanoma. Deep learning (DL) models have shown
strong performance in skin lesion classification tasks, yet they often struggle to
capture the complex geometric and topological structures present in dermoscopic
images. In this study, we propose a hybrid classification framework that com-
bines topological descriptors with CNNs and Vision Transformers to improve
diagnostic performance across multiple categories of skin lesions. By extracting
topological signatures, we quantify shape and connectivity patterns that are often
overlooked by standard convolutional neural networks. Our experiments in multi-
ple publicly available dermatology datasets demonstrate that topological models
perform competitively on their own, and their integration with DL models consis-
tently improves classification metrics. These results establish topological features
as a valuable complement to deep learning in the diagnosis of skin cancer.

Keywords: Topological data analysis - Cubical Persistence - Skin cancer detec-
tion - Dermoscopic image analysis - CNNs - Vision Transformers

1 Introduction

Skin cancer is one of the most common and potentially lethal malignancies worldwide,
making early and accurate detection crucial for reducing morbidity and mortality. Clin-
ical decision support systems (CDSS) powered by machine learning (ML) have shown
great promise in automating the analysis of dermoscopic images, with deep learning
(DL) models achieving dermatologist-level performance in various lesion classification
tasks [9,36]. However, these conventional DL approaches are based primarily on pixel-
level features and often do not fully capture the complex shape and boundary patterns
that distinguish malignant from benign lesions [16].

Topological data analysis (TDA) offers a complementary perspective by extract-
ing robust scale-invariant descriptors of the geometric and connectivity structure of an
image [5]. Persistent homology, in particular, encodes how features such as connected
components and holes evolve across intensity thresholds, producing high-dimensional
topological signatures that are insensitive to changes in noise and illumination. Recent
work has demonstrated the utility of TDA in medical imaging contexts such as tumor
margin delineation and histopathology analysis [17].
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In this paper, we bring together the strengths of TDA and DL in a unified CDSS for
skin cancer detection. We extract persistence-based features from dermoscopic images
of multiple types of lesion, including melanoma, basal cell carcinoma, squamous cell
carcinoma, and benign nevi, and evaluate both standalone topological classifiers and
their integration with state-of-the-art convolutional and transformer-based architectures.
By encoding the persistence diagrams as sequential inputs to a transformer, we leverage
its capacity to model long-range dependencies among topological events.

Our contributions can be summarized as follows:

We present the first comprehensive evaluation of topological data analysis for au-

tomated skin lesion classification across multiple cancerous and benign categories.

— We propose a novel fusion strategy that encodes persistence outputs as sequences
and integrates them with transformers to capture global topological interactions.

— We show that topological models rival conventional DL methods and that combin-
ing them with CNNs and ViTs consistently improves classification performance.

— Our results highlight the potential of topological features to enhance the accuracy

and robustness of deep learning—based CDSS for skin cancer detection.

2 Related Work

Machine Learning Methods in Skin Cancer Detection. Machine learning and
deep learning have revolutionized automated skin lesion analysis. Esteva et al. trained
a CNN on over 100 000 clinical and dermoscopic images to match expert perfor-
mance across more than a dozen lesion categories [14]. Subsequent work fine-tuned
ImageNet-pretrained ResNets for marked accuracy gains [28], confirmed cross-cohort
robustness [3], and leveraged large benchmarks like HAM10000 alongside ensemble
methods to boost generalization [37,9]. Despite these advances, challenges persist in
data heterogeneity, interpretability, and clinical integration [29]. Recent strategies in-
clude fusing dermoscopy with patient metadata for better risk stratification [21] and
adopting transformer-based models to capture global context [39]. Yet most approaches
remain pixel-centric, and the use of topological data analysis to encode shape and con-
nectivity is still largely unexplored in skin cancer diagnostics.

Topological Machine Learning in Medical Image Analysis. Persistent homology
(PH) offers robust, shape-based descriptors that are resilient to noise and photomet-
ric variation, making it a powerful tool in medical imaging. PH-based features have
been applied in diverse biomedical contexts, including modeling cell development [25],
delineating tumor margins [30], analyzing brain connectivity [3 1], and extracting mul-
tiscale genomic signatures [23]. For a broader overview, see Skaf et al. [34]. Recently,
topological deep learning has emerged as a paradigm for integrating persistence fea-
tures into neural networks. Architectures by [17,1] embed persistence summaries to im-
prove segmentation [20,33] and classification [0,19]. We extend this framework to skin
cancer detection, extracting PH from dermoscopic images and evaluating both stan-
dalone and hybrid models combining PH with CNNs and ViTs. Although prior studies
have applied TDA to melanoma detection [24,8], this work presents the first comprehen-
sive evaluation of topological descriptors for skin lesion classification, demonstrating
both competitive standalone performance and consistent enhancement of deep learn-
ing—based diagnostics.
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3 Methodology

Our methodology involves two key steps. First, we extract topological feature vectors
from dermascopic images. Then, we evaluate their standalone performance in ML mod-
els and integrate them with the latest DL models to assess their impact on improving
SOTA performance.

3.1 Topological Feature Vectors for Dermascopic Images

PH is a powerful mathematical tool in TDA for analyzing complex data structures. It
identifies hidden patterns at multiple resolutions and effectively extracts features from
various data formats, including point clouds and networks [10]. This paper focuses on
its application in image analysis, specifically cubical persistence, a variant of PH. While
we provide an accessible overview, deeper insights can be found in [12]. PH follows a
three-step procedure:

— Filtration: Inducing a sequence of nested topological spaces from the data.
— Persistence Diagrams: Recording the topological changes within this sequence.
— Vectorization: Converting these diagrams into vectors to be utilized in ML models.

Step 1 - Constructing Filtrations.  Since PH essentially functions as a mechanism
for monitoring the progression of topological characteristics within a sequence of sim-
plicial complexes, constructing this sequence stands out as a crucial step. In image
analysis, the common approach is to generate a nested sequence of binary images, also
known as cubical complexes. To achieve this from a given color (or grayscale) image
X (with dimensions r X s), one needs to select a specific color channel (e.g., red, blue,
green, or grayscale). The color values ;; of individual pixels A;; C X are then uti-
lized. Specifically, for a sequence of color values (0 = t; < to < --- < tny = 25)),
a nested sequence of binary im-
ages X1 C Xy C --- C Xy is ob-
tained, where &,, = {A;; C X |
vij < tn} (See Figure 1). In par-
ticular, this involves starting with Fig. 1: Forthe 5% 5 image X with the given pixel values, the sublevel
ablank r x s image and progres- filtration is the sequence of binary images X1 C X2 C -+ C 5.
sively activating (coloring black) pixels as their grayscale values reach the specified
threshold ¢,,. This process, known as sublevel filtration, is conducted on &’ relative to a
designated function (in this instance, grayscale).
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Step 2 - Persistence Diagrams.  PH traces the development of topological character-
istics across the filtration sequence { X, } and presents it through a persistence diagram
(PD). Specifically, if a topological feature o emerges in X, and disappears in X,, with
1 < m < n < N, the thresholds ¢,,, and ¢,, are denoted as the birth time b, and death
time d, of o, respectively (b, = t,, and d, = t,). Therefore, PD contains all such 2-
tuples PDy(X) = {(bs, d,)} where k represents the dimension of the topological fea-
tures. The interval d, — b, is termed as the lifespan of o. Formally, the k*" persistence
diagram can be defined as PDy(X) = {(bs,d,) | 0 € Hi(X,,) forb, < t, < ds},
where Hy(X,,) denotes the k' homology group of the cubical complex X,,. Thus,
PDy,(X) contains 2-tuples indicating the birth and death times of k-dimensional voids
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{o} (such as connected components, holes, and cavities) in the filtration sequence
{X,}. For instance, for X in Figure 1, PDo(X) = {(1,00), (1, 3), (1, 3), (2, 3)} repre-
sents the connected components, while PD; (X) = {(2,5), (2, 3), (4, 5)} illustrates the
holes in the corresponding binary images in Figure 1.

Step 3 - Vectorization.  Persistence Diagrams (PDs), consisting of collections of 2-
tuples, are impractical for ML tools. A common alternative is vectorization [2], which
converts PD information into vectors or functions. One widely used method is the Betti
vector, which tracks the number of alive topological features at each threshold. It is a
step function where Sy (t,,) counts connected components in the binary image X,, and
B1(t,) counts holes (loops). In ML, Betti functions are typically represented as vectors
Br = [Brk(t1) ... Pr(tn)]. For example, in Figure 1, So(X) = [3 2 1 1 1] shows the
connected components, while ﬂ_1>(X ) = [0 21 2 0] represents the holes.

Other PD vectorization methods include persistence images [ 1], landscapes [4], sil-
houettes [7], and kernel methods [2]. However, in this work, we primarily use Betti
vectors due to their computational efficiency, interpretability, and flexibility to be rep-
resented as sequences rather than just vectors, making them well-suited for SOTA ML
approaches such as transformers.

3.2 ML and DL models

We employ topological vectors in two distinct approaches to thoroughly evaluate their
effectiveness in skin image analysis.

Basic ML Model. In our basic model, we evaluate the standalone performance of topo-
logical vectors by directly feeding them into ML classifiers. Using the procedure out-
lined in Section 3.1, we extract topological feature vectors from each image via sublevel
filtration applied to each color channel. Since our vectorization approach employs Betti
vectors, these representations can be treated both as static feature vectors and sequential
data. To leverage this dual nature, we integrate them into state-of-the-art ML models:
a multi-layer perceptron for topological embeddings (PH+MLP) and a Transformer-
based sequential classifier for structured sequence modeling (PH+TR). This setup en-
ables us to assess the optimal utilization of topological features across different ML
architectures.

Hybrid Deep Learning Models. In our hybrid models, we evaluate the improve-
ments topological vectors bring to SOTA DL models. In order to test this direction, we
used pre-trained CNN models, and Vision Transformers.

Topo-ViT Model. We propose a dual-branch Transformer architecture, Topo-ViT,
that integrates TDA with vision-based representation learning for skin lesion classifica-
tion. The model consists of two parallel encoders: one for dermoscopic images and a
second for PH features.

The image branch uses a Vision Transformer backbone (e.g., DaViT-Tiny) to con-
vert a 224 x 224 RGB image into a sequence of patch tokens, each embedded into a
vector of dimension d, capturing spatial and textural patterns.

The topology branch processes a 400-dimensional PH vector computed from sub-
level filtrations across color channels. This vector is reshaped into a sequence of smaller
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Fig.2: Topo-ViT Model. Hybrid DL framework integrating topological features with Vision
Transformers. PH extracts topological feature vectors from dermascopic images, which are con-
catenated with deep feature embeddings extracted via hierarchical self-attention mechanisms in
vision Transformer blocks.

tokens each linearly projected and passed through a shallow transformer encoder. These
PH tokens are then up-projected to match the embedding dimension of the image to-
kens.

A learnable [CLS] token is prepended to the combined sequence:

[CLS] + [image tokens] + [PH tokens]

This fused token sequence is passed through a shared classifier transformer composed
of multiple layers of self-attention. By allowing all tokens to attend to each other, the
[CLS] token aggregates joint information from both visual and topological modalities.

The final output of the [CLS] token is passed through a linear classification head to
generate logits for skin disease prediction. By combining complementary cues—texture
from images and structure from topology—Topo-ViT improves generalization, robust-
ness to noise, and interpretability in melanoma and basal cell carcinoma detection tasks.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluated our models using four publicly available skin image datasets
that vary in size, class granularity (Table 1). Our primary dataset, ISIC2018, used in
the ISIC 2018 Challenge [“], originally derived from the HAM10000 dataset [37] and
a benchmark task in the MedMNIST v2 collection [38]. It comprises 10K dermoscopic
RGB images across seven diagnostic classes. We used the dataset for both 7-class mul-
ticlass classification and binary classification, where all malignant lesions were grouped
and contrasted against benign cases.
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To evaluate performance of our mod- Table 1: Summary of dermatoscopic
els on smaller datasets, we used the PH? {atasets used in this study.

dataset [27], which includes 200 dermo-
scopic images labeled as Common Ne- pataset Class # Images
vus, Atypical Nevus, or Melanoma. We
also used the MedNode dataset [15], con-
taining 170 macroscopic images catego-

Melanocytic Nevus 6,705
Melanoma 1,113
Basal Cell Carcinoma 514

rized as Benign Nevus or Melanoma, and  [g1c2018 Actinic Keratoses 327
the Diverse Dermatology Images (DDI) Benign Keratosis 1,099
dataset [11], which includes 656 clinical Dermatofibroma 115
images across two classes: Benign and Ma- Vascular Lesions 142
lignant. All images were resized to 224 x Common Nevus 30
224 pixels for consistency across models. PH2 Atypical Nevus 30
Topological Vectors. As described in Sec- Melanoma 40
tion 3.1, we apply sublevel filtration to MedNod Benign Nevus 100
each color channel (R, G, B, and an CENO% Melanoma 70
additional G) using 50 threshold levels Benign 485
per channel. lhis process generates 50-  DDI Malignant 171

dimensional 3y, and (3; vectors for each
channel. By concatenating these vectors across all channels, we construct a 400-
dimensional topological vector B (X) for each image X'. Notably, since B (X) is directly
induced by the filtration process, it can also be interpreted as a sequential representation.

Evaluation.  For the ISIC2018 dataset, which includes predefined training (7,007),
validation (1,003), and test (2,005) splits [38], we used these official partitions without
modification to ensure consistency and reproducibility. For all smaller datasets (PH?,
MedNode, and DDI), we employed an 80:20 stratified split to preserve class distribu-
tion between training and testing sets. Final metrics included AUC, accuracy, recall,
specificity, precision, and F1 (Table 4).

Hyperparameters.  For ISIC2018, Topo-CNNs were trained on 224x224 images with
batch size 64 for up to 50 epochs, using early stopping (patience 5) and LR scheduling.
The ImageNet-pretrained CNN backbone was frozen; its global-average-pooled fea-
tures were concatenated with 400-D Betti vectors and fed through two FC layers (256,
128 units) with batch norm and dropout (0.3, 0.2). We optimized with Adam (LR=1e-
3), using sparse categorical cross-entropy for the 7-class task and binary cross-entropy
(threshold 0.35) for the binary task.

Our default Topo-ViT reshapes each 400-D PH vector into 25 tokens of 16 D,
projects them to 128 D, and encodes with a 4-head transformer. The resulting topo-
logical embeddings are linearly mapped to the ViT’s feature width (768 D, or 512 D
for MobileViT) and concatenated with image patch tokens plus a learnable class token.
A 6-layer transformer decoder (width 768, 8 heads) fuses these tokens, with uniform
dropout (0.3) across all embedding layers, transformer blocks, and the classification
head. Our code is available at the following link: .

' Code link: https://anonymous.4open.science/r/TopoDerma-28EB/
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Table 2: AUC results across all datasets. T-CNN and T-ViT denote the corresponding CNN and
VIiT architectures augmented with topological vectors via attention. The final column shows the
mean AUC improvement of each topological model over its vanilla counterpart.

Model ISIC (7) ISIC (2) DDI(2) PH? (3) MedNode (2) Av. Imp
PH+MLP 87.90 83.06 66.03  81.21 74.29

PH+TR 87.42 81.60 66.63 83.42 87.50 2.82
Inception v3 [35] 93.17 85.30 60.02 71.18 74.28

T-Inception v3 89.03 84.64  73.58  75.69 80.00 3.80
DenseNet121 [18]  92.92 85.52 61.10 66.84 81.43
T-DenseNet121 91.47 89.28 71.78  82.81 74.28 4.36
MobileNet v2 [32] 61.28 79.01 50.78  66.84 77.14
T-MobileNet v2 89.28 87.89 73.10  80.38 57.14 10.55
MobileViT [26] 94.09 93.78 69.06  82.81 90.71
T-MobileViT 95.25 92.06 70.80  89.41 92.14 1.84
Swin v2 [22] 97.95 94.95 78.24  87.57 88.93

T-Swin v2 98.01 95.48 79.62  87.76 94.29 1.50
DaViT [13] 94.93 95.57 76.32  83.46 91.43

T-DaViT 95.55 95.73 83.33  89.50 94.64 3.41

4.2 Results and Discussion

Tables 2 and 4 report the performances for baseline and topologically-enhanced models

across five skin-lesion datasets. Across the large
ISIC2018 benchmark, topological augmentation
yields modest gains (+1—4 pts), while CNNs and
ViTs augmented with persistence features con-
sistently outperform their vanilla counterparts.
For example, T-DenseNet121 and T-Inception
v3 improve by +4.36 and +3.80 AUC points on
average, and even the lightweight MobileNetV2
backbone jumps by +10.55 pts when fused with
Betti vectors. Standalone topological classifiers
remain competitive.

Notably, the benefits of topological vectors
are more pronounced on smaller datasets (DDI,
PH2?, and MedNode), where deep models of-
ten struggle to generalize. In these low-data

Table 3: MedMNIST baselines for

ISIC 2018 (7) [38].

Model AUC ACC
ResNet-18 (28) 91.7 73.5
ResNet-18 (224) 92.0 754
ResNet-50 (28) 91.3 73.5
ResNet-50 (224) 91.2 73.1
auto-sklearn 90.2 71.9
AutoKeras 91.5 74.9
Google AutoML Vision 91.4 76.8
T-Swin 98.0 88.2

regimes, persistence-based features provide robust, scale-invariant signals that help
guide learning. As a result, AUC gains often exceed 10 points—for example, +10.68
for T-DenseNet121 on DDI and +15.97 on PH>—while improvements on the larger
ISIC dataset remain modest. T-DaViT achieves the highest AUCs across all three small
datasets (83.33, 89.50, and 94.64), highlighting the value of topological augmentation in
data-scarce settings. Compared to MedMNIST baselines on DermaMNIST (ISIC2018
(7)) [38], our Topo-ViT models also achieve superior performance.
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Table 4: Performance comparison of models across all datasets. T-CNN and T-ViT models de-
note the corresponding CNN and ViT architectures augmented with topological vectors.

ISIC2018 (7-class) ISIC2018 (Binary)
Model AUC Acc Sens Spec F-1 ||AUC Acc Sens Spec F-I
PH+MLP 87.90 71.67 71.67 91.27 68.56]|83.06 80.30 64.80 84.07 56.26
PH+TR 87.42 70.97 36.52 91.93 39.48 | 81.60 80.00 65.17 65.17 44.38

Inception v3 93.17 75.81 57.44 93.01 50.90 || 85.30 82.29 17.60 98.02 27.99
T-Inception v3  89.03 72.91 33.23 65.38 36.19 | 84.64 81.64 60.20 86.85 56.19

DenseNet121 9292 69.58 27.83 87.11 31.83 | 85.52 82.49 52.81 79.79 45.92
T-DenseNet121 91.47 75.52 4548 85.71 48.52|/89.28 83.04 68.62 86.54 61.27

MobileNetV2  61.28 64.39 17.61 85.75 33.38|/79.01 58.2 91.33 50.15 46.07
T-MobileNetV2 89.28 74.36 36.83 34.21 39.80| 87.89 83.59 67.61 87.47 61.69

MobileViT 94.09 87.23 70.87 96.60 72.32/93.78 88.98 82.63 82.63 82.53
T-MobileViT ~ 95.25 82.54 56.15 95.13 60.93|/92.06 86.13 80.67 80.67 66.90

DaViT 94.93 89.38 76.13 97.21 78.79|95.57 91.67 85.46 85.46 86.40

T-DaViT 95.55 85.69 70.88 96.44 71.00|95.73 91.32 85.24 85.24 77.23

Swin v2 97.95 87.38 75.95 96.61 77.81|/94.95 89.68 86.63 86.63 84.51

T-Swin v2 98.01 88.18 74.60 96.76 78.09 | 95.48 90.92 84.51 84.51 76.12

DDI (Binary) PH? (3-class) MedNode (Binary)

Model AUC Acc Sens. Spec. Fl |[AUC Acc Sens. Spec. FI ||AUC Acc Sens. Spec. Fl
PH+MLP 66.03 7424 47.06 83.67 48.48(|81.21 70.00 70.00 84.38 69.94[74.29 67.65 78.57 60.00 66.67
PH+TR 66.63 75.76 3529 89.80 42.86(|83.42 72.50 70.83 85.42 71.47|/87.50 79.41 78.57 80.00 75.86

T-DenseNet121 71.78 66.67 58.82 69.38 47.62||82.81 55.00 58.33 77.08 49.62||74.28 70.58 85.71 60.00 70.58

InceptionV3 60.02 66.67 41.17 75.51 38.89||71.18 55.00 54.16 75.00 56.50 || 74.28 58.82 80.00 58.57 69.56
T-InceptionV3  73.58 74.24 76.47 73.47 60.46 || 75.69 50.05 54.16 75.00 48.90 || 80.00 76.47 85.71 70.00 75.00

MobileNetV2  50.78 75.75 17.64 9591 27.27||66.84 55.00 58.33 75.69 56.11 ||77.14 70.58 60.00 85.71 70.58
T-MobileNetV2 73.10 69.69 64.71 71.43 52.38||80.38 65.00 62.50 80.56 63.59 ||57.14 47.06 85.71 50.00 66.67

MobileViT 69.06 72.73 61.46 61.46 41.94|82.81 67.50 70.83 82.99 68.54|/90.71 82.35 82.86 82.86 80.00
T-MobileViT ~ 70.80 75.76 75.76 65.43 48.39||89.41 75.00 79.17 87.15 76.17||92.14 79.41 77.14 77.14 72.00

DenseNet121 ~ 61.10 77.27 11.76 9591 19.04H66A84 45.00 45.83 70.14 47.19H81A43 76.47 100.00 42.85 83.33

DaViT 76.32 73.48 62.94 62.94 44.44183.46 70.00 72.92 83.68 7292|9143 79.41 8143 81.43 78.79
T-DaViT 83.33 72.50 75.00 85.42 73.92/89.50 77.50 79.17 87.50 80.32 || 94.64 94.12 92.86 92.86 92.31
Swin v2 78.24 80.30 68.49 68.49 53.57||87.57 70.00 72.92 84.03 71.74| 88.93 73.53 7429 74.29 70.97
T-Swin v2 79.62 81.06 70.92 70.92 57.63|87.76 72.50 72.92 85.07 73.89|94.29 91.18 89.29 89.29 88.00

5 Conclusion

We presented a topological deep learning framework for skin cancer detection, combin-
ing persistent homology—based features with convolutional and transformer architec-
tures. Our experiments demonstrate that topological signatures alone are competitive,
and their integration with deep models consistently improves classification accuracy
across diverse skin lesion types. By capturing global shape and connectivity informa-
tion, topological features enhance both robustness and interpretability, key limitations
of conventional deep learning. In future work, we plan to extend our framework to mul-
timodal data by incorporating patient metadata and clinical images, explore end-to-end
differentiable topological layers, and validate our approach through prospective clinical
studies. This study highlights the potential of TDA to improve diagnostic performance
and interpretability in dermatological Al systems.
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