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Research for Skin Health
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Dataset Curation

We analyse the usage of ISIC image datasets with a selection of well-cited
research papers from the past 3-4 years and identify its related issues:

. . . . . O\
(Researchers in medical image analysis on skin cancer-based on

dermoscopic images are focused on developing new computer algorithms.
However, issues inherent within the datasets used are often overlooked

or under researched. )

Cassidy, B., Kendrick, C., Brodzicki, A., Jaworek-Korjakowska, J. and Yap, M.H., 2022. Analysis of the ISIC image datasets: Usage,
benchmarks and recommendations. Medical image analysis, 75, p.102305. https://github.com/mmu-dermatology-research/
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Dataset Curation

We propose a duplicate removal strategy to curate the datasets. By
removing the duplicate images (overlap images between and within the test
and training sets), we produced a cleaned (non-duplicate) dataset and a

balanced dataset.

ﬂlllustration of (a) duplicate image with different filenames
(ISIC20016018.jpg and ISIC_0012271.jpg) found in the 2017 training and
testing sets; (b) duplicate image with the same filename (ISIC_0029847.jpg)
found in the 2018 and 2019 training sets; (c) duplicate image with the
same filename (ISIC_0011132.jpg) found in two training sets (2017, 2019)
and one testing set (2016); (d) duplicate image with different filenames
(ISIC_5448850.jpg and ISIC_9881235.jpg) found in the 2020 training set.

Cassidy, B., Kendrick, C., Brodzicki, A., Jaworek-Korjakowska, J. and Yap, M.H., 2022. Analysis of the ISIC image datasets: Usage,
benchmarks and recommendations. Medical image analysis, 75, p.102305. https://github.com/mmu-dermatology-research/
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Dataset Curation

Our duplicate removal strategy resulted in a curated dataset with a total
number of image files is 56,987 (4,905 melanoma and 52,082 other).

With computational resources: A total of 45,590 image files in the training
set (3,924 melanoma and 41,666 other) and a total of 11,397 image files in
the validation set (981 melanoma and 10,416 other).

ISIC Balanced Dataset: A total number of image files is 9,810 (4,905
melanoma and 4,905 other) with a 1:1 ratio. This resulted in a total of 7,848
image files in the training set (3,924 melanoma and 3,924 others) and 1,962
image files in the validation set (981 melanoma and 981 others).

Cassidy, B., Kendrick, C., Brodzicki, A., Jaworek-Korjakowska, J. and Yap, M.H., 2022. Analysis of the ISIC image datasets: Usage,
benchmarks and recommendations. Medical image analysis, 75, p.102305. https://github.com/mmu-dermatology-research/
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There are a broad range of artifacts present within skin lesion datasets (hair,
borders, rulers, etc..).
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Ruler Air Pockets Clinical Markings

_ Hair

Border (DCA)

This research investigates artifacts proposes methods in handling artifacts,
including artifacts removal methods.
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Artifacts Labelling

Each image has been manually inspected under 600x magnification and
annotated across the following:

All Artifacts Border Artifacts (Drill down)

Artifact Subset Artifact Border Subset Border Type
Category Train Mel | Train Oth | Val Mel | Val Oth | Totals | 1Y€ Train Mel | Train Oth | Val Mel | Val Oth | Totals
B = ca T, = 3950 Black Bar(s) 56 212 10 58 336

orders DCA 1657 451 405 118 2631
Hair 2224 2595 560 617 5996 Non-Contact BG | 8 0 ) 3 13
Mecasurecment Device | 962 749 202 183 2096 Dataset Totals 1721 663 417 179 2980
Air Pockets 1129 637 442 142 2350 Black Border Non-Contact Background
Clinical Markings 124 90 29 20 263 3
Other 100 55 55 18 228
No Artifacts 377 616 57 172 1222

Pewton, S.W. and Yap, M.H., 2022. Dark corner on skin lesion image dataset: Does it matter?. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (pp. 4831-4839).
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Artifacts - hair

Skin Hair dataset contains over 252 dermoscopic images including artificial
hair and will be expanded over time.

MICCAI

It contains: (a) dermoscopic images, (b) images containing artificial hairs
and the corresponding ground-truth masks (c).

Jaworek-Korjakowska, J., Wojcicka, A., Kucharski, D., Brodzicki, A., Kendrick, C., Cassidy, B. and Yap, M.H., 2022, October. Skin_Hair
Dataset: Setting the Benchmark for Effective Hair Inpainting Methods for Improving the Image Quality of Dermoscopic Images. In European
Conference on Computer Vision (pp. 167-184). Cham: Springer Nature Switzerland. ttps://skin-hairdataset.qithub.io/SHD/
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Experiment: Effect of hair on prediction

b)-C)-

Jaworek-Korjakowska, J., Wojcicka, A., Kucharski, D., Brodzicki, A., Kendrick, C., Cassidy, B. and Yap, M.H., 2022, October. Skin_Hair
Dataset: Setting the Benchmark for Effective Hair Inpainting Methods for Improving the Image Quality of Dermoscopic Images. In European
Conference on Computer Vision (pp. 167-184). Cham: Springer Nature Switzerland. https://skin-hairdataset.github.io/SHD/
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DCA Types Labelling

Sizing categories recommended by Sies et al. used:

Small DCA

MlccAlzgrzﬁg%'
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sic

- Small = 1-24% (inclusive)

- Medium = 25-49% (inclusive)
. Large = 50%+ (inclusive)

. Other = <1% (exclusive)

e

Medium DCA

Large DCA

.' |
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University

Other

DCA Subset DCA Type
. Type Train Mel | Train Oth | Val Mel | Val Oth | Totals
Other IS an eXtra Catego ry Small DCA 742 237 167 58 1204
added to highlight images Medium DCA | 393 79 95 16 | 583
which may be difficult to Large DCA | 343 78 80 125 |5%
detect Other : 179 57 63 19 318
* Dataset Totals | 1657 451 405 118 2631

A

MICCAI

Pewton, S.W. and Yap, M.H., 2022. Dark corner on skin lesion image dataset: Does it matter?. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (pp. 4831-4839).
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DCA Removal: Does it work?

Original

Medium DCA

Baseline

Small DCA

Navier Stokes Telea

Large DCA

Original

Pred: mel

Combined

Pewton, S.W. and Yap, M.H., 2022. Dark corner on skin lesion image dataset: Does it matter?. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (pp. 4831-4839).
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DCA Removal: Friend or Foe?

Research question: Is removal and inpainting dark corner artifacts, with the
intention of creating an ideal condition for models, the best solution?

JE T I Manchester
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Previous research has shown to be inconclusive due to a lack of available
datasets with corresponding labels for dark corner artifact cases.

Research idea: Introduce synthetic dark corner artifacts and superimpose
onto the training set to improve the performance.

Which preprocessing method provides the best results: inpainted DCA or
superimposed synthetic DCA?

Pewton, S.W., Cassidy, B., Kendrick, C. and Yap, M.H., 2024. Dermoscopic dark corner artifacts removal: Friend or foe?. Computer Methods

and Programs in Biomedicine, 244, p.107986.
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DCA Removal: Friend or Foe?

Curated balanced datasets from ISIC and Fitzpatrick 17k datasets.
Training set (train and val): clean datasets (without DCA).
Testing set: datasets with DCA, curated from ISIC and Fitzpatrick 17k.

Summary of the DCA Split Balanced Dataset which contains a total of 10,250
images. Mel - melanoma; Non-Mel - Non-melanoma.

Training set

Testing set (DCA sizes)

Train Val Small Medium Large Other
Mel 2756 307 909 488 423 242
Non-Mel 2756 307 909 488 423 242

A

MICCAI

Pewton, S.W., Cassidy, B., Kendrick, C. and Yap, M.H., 2024. Dermoscopic dark corner artifacts removal: Friend or foe?. Computer Methods

and Programs in Biomedicine, 244, p.107986.
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Realistic DCA Creation
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Pewton, S.W., Cassidy, B., Kendrick, C. and Yap, M.H., 2024. Dermoscopic dark corner artifacts removal: Friend or foe?. Computer Methods

and Programs in Biomedicine, 244, p.107986.
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Results

True DCA Binary DCA Realistic DCA

The performance of all trained networks (clean model, superimposed binary
DCA model and superimposed realistic DCA model) on the test set.

Model Metrics

Acc TPR TNR Precision F1 AUC
Clean 0.57 0.90 0.23 0.54 0.68 0.61
Binary DCA 0.60 0.91 0.29 0.56 0.70 0.66
Realistic DCA 0.61 0.73 0.49 0.59 0.65 0.66

A

MICCAI

Pewton, S.W., Cassidy, B., Kendrick, C. and Yap, M.H., 2024. Dermoscopic dark corner artifacts removal: Friend or foe?. Computer Methods

and Programs in Biomedicine, 244, p.107986.
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Results

Original Image

Original Image Original Image

Clean Binary DCA Realistic DCA Clean Binary DCA Realistic DCA Clean Realistic DCA

Pewton, S.W., Cassidy, B., Kendrick, C. and Yap, M.H., 2024. Dermoscopic dark corner artifacts removal: Friend or foe?. Computer Methods
and Programs in Biomedicine, 244, p.107986.

Binary DCA
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Results

The performance of the best TNR from the inpainted method and the superim-
posed method on the test set with different DCA sizes.

DCA size =~ Method Metrics
Acc TPR TNR Precision F1 AUC
Small Inpainted 0.58 0.87 0.30 0.55 0.67 0.62
Superimposed 0.60 0.85 0.35 0.57 0.68 0.65
Medium Inpainted 0.59 0.88 0.30 0.56 0.68 0.66
Superimposed  0.64 0.75 0.53 0.62 0.68 0.70
Large Inpainted 0.61 0.72  0.50 0.59 0.65 0.68
Superimposed 0.60 0.39 0.80 0.66 0.50 0.63
Other Inpainted 0.57 0.87 0.27 0.54 0.67 0.65
Superimposed 0.60 0.83 0.36 0.57 0.67 0.67

Pewton, S.W., Cassidy, B., Kendrick, C. and Yap, M.H., 2024. Dermoscopic dark corner artifacts removal: Friend or foe?. Computer Methods
and Programs in Biomedicine, 244, p.107986.
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Findings

« Binary DCA model achieved better TPR than the realistic DCA model in
our experiments, but it did not outperform the clean model.

« DCA regions may exhibit artifacts that were not visible to the human eye
where the deep learning model might tend to use those features for
decision making.

« The focus is on the region of interest (skin lesions), there is an apparent
randomness in the predictions due to the challenging nature of melanoma
classification.

« As external ocular images exist in different imaging for other applications,
such as eye imaging and colon imaging, this study potentially can be
expanded in other domains.

Pewton, S.W., Cassidy, B., Kendrick, C. and Yap, M.H., 2024. Dermoscopic dark corner artifacts removal: Friend or foe?. Computer Methods
and Programs in Biomedicine, 244, p.107986.
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Future Directions

® Multimodal Datasets
CM-CBD-17K dataset (Ongoing) and ISIC 2024 Challenge

® Domain adaptation — clinical images and dermoscopic
images

® Self-supervised learning / unsupervised learning methods
® Alignment with Clinical practices
® Engage with ISIC Al Working Group
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