

Revealing the Myths of Pre-Processing and Augmentation in Skin Images

Prof. Moi Hoon Yap

Research Lead, Department of Computing and Mathematics, Manchester Metropolitan University, UK Honorary Research Professor, Lancashire Teaching Hospitals

LNCS 13183 **Diabetic Foot Ulcers Grand Challenge**

Second Challenge, DFUC 2021 Held in Conjunction with MICCAI 2021 Strasbourg, France, September 27, 2021, Proceedings

Sponsors

#DFUC2022

Lancashire Teaching Hospitals

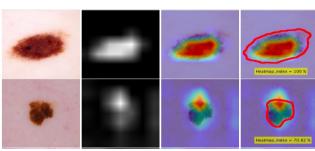
NHS FoundationTrust

#MICCAI2022

LNCS 13797

Diabetic Foot Ulcers Grand Challenge

Third Challenge, DFUC 2022 Held in Conjunction with MICCAI 2022 Singapore, September 22, 2022, Proceedings

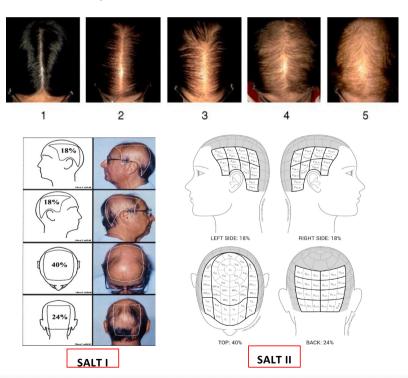

Manchester

Metropolitan University



Research for Skin Health

EPSRC



Bill Cassidy, Connah Kendrick, Andrzej Brodzicki, Joanna Jaworek-Korjakowska, Moi Hoon Yap (2022), Analysis of the ISIC Image Datasets: Usage, Benchmarks and Recommendations, Medical Image Analysis, 102305, ISSN 1361-8415,

Generating Artificial Intelligence Assisted Assessment for Alopecia (GAIA) *IRAS 296888, NHR REC: 23/LO/0396*

Dataset Curation

We analyse the usage of ISIC image datasets with a selection of well-cited research papers from the past 3-4 years and identify its related issues:

Researchers in medical image analysis on skin cancer-based on dermoscopic images are focused on developing new computer algorithms. However, **issues inherent within the datasets used are often overlooked** or under researched.

Cassidy, B., Kendrick, C., Brodzicki, A., Jaworek-Korjakowska, J. and Yap, M.H., 2022. Analysis of the ISIC image datasets: Usage, benchmarks and recommendations. *Medical image analysis*, 75, p.102305. <u>https://github.com/mmu-dermatology-research</u>/

Dataset Curation

We propose a duplicate removal strategy to curate the datasets. By removing the duplicate images (overlap images between and within the test and training sets), we produced a cleaned (non-duplicate) dataset and a balanced dataset.

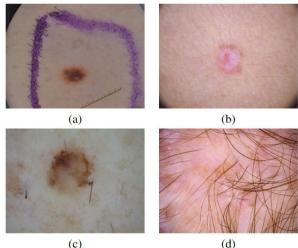


Illustration of (a) duplicate image with different filenames (ISIC_0016018.jpg and ISIC_0012271.jpg) found in the 2017 training and testing sets; (b) duplicate image with the same filename (ISIC_0029847.jpg) found in the 2018 and 2019 training sets; (c) duplicate image with the same filename (ISIC_0011132.jpg) found in two training sets (2017, 2019) and one testing set (2016); (d) duplicate image with different filenames (ISIC_5448850.jpg and ISIC_9881235.jpg) found in the 2020 training set.

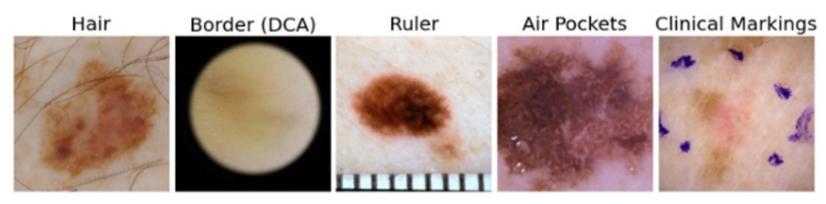
Cassidy, B., Kendrick, C., Brodzicki, A., Jaworek-Korjakowska, J. and Yap, M.H., 2022. Analysis of the ISIC image datasets: Usage, benchmarks and recommendations. *Medical image analysis*, *75*, p.102305. <u>https://github.com/mmu-dermatology-research</u>/

Dataset Curation

Our duplicate removal strategy resulted in a curated dataset with a total number of image files is 56,987 (**4,905 melanoma** and **52,082 other**).

With computational resources: A total of 45,590 image files in the training set (3,924 melanoma and 41,666 other) and a total of 11,397 image files in the validation set (981 melanoma and 10,416 other).

ISIC Balanced Dataset: A total number of image files is 9,810 (**4,905 melanoma** and **4,905 other**) with a 1:1 ratio. This resulted in a total of 7,848 image files in the training set (3,924 melanoma and 3,924 others) and 1,962 image files in the validation set (981 melanoma and 981 others).

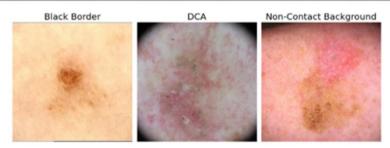

Cassidy, B., Kendrick, C., Brodzicki, A., Jaworek-Korjakowska, J. and Yap, M.H., 2022. Analysis of the ISIC image datasets: Usage, benchmarks and recommendations. *Medical image analysis*, 75, p.102305. <u>https://github.com/mmu-dermatology-research</u>/

Artifacts

There are a broad range of artifacts present within skin lesion datasets (hair, borders, rulers, etc..).

This research investigates artifacts proposes methods in handling artifacts, including artifacts removal methods.

Artifacts Labelling


Each image has been manually inspected under 600x magnification and annotated across the following:

All Artifacts

Artifact		Artifact			
Category	Train Mel	Train Oth	Val Mel	Val Oth	Totals
Borders	1721	663	417	179	2980
Hair	2224	2595	560	617	5996
Measurement Device	962	749	202	183	2096
Air Pockets	1129	637	442	142	2350
Clinical Markings	124	90	29	20	263
Other	100	55	55	18	228
No Artifacts	377	616	57	172	1222

Border Artifacts (Drill down)

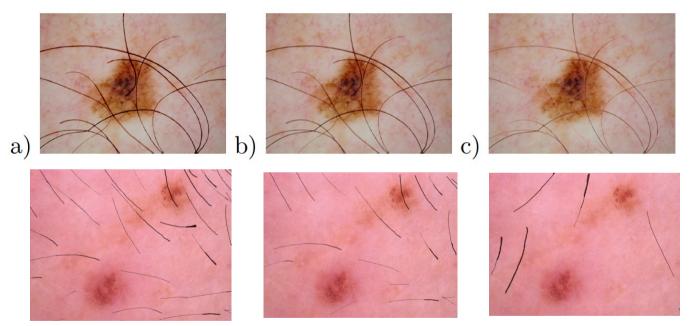
Border		Border Type				
Туре	Train Mel	Train Oth	Val Mel	Val Oth	Totals	
Black Bar(s)	56	212	10	58	336	
DCA	1657	451	405	118	2631	
Non-Contact BG	8	0	2	3	13	
Dataset Totals	1721	663	417	179	2980	

Pewton, S.W. and Yap, M.H., 2022. Dark corner on skin lesion image dataset: Does it matter?. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 4831-4839).

Artifacts - hair

Skin Hair dataset contains over 252 dermoscopic images including artificial hair and will be expanded over time.

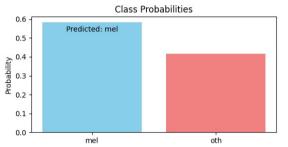
It contains: (a) dermoscopic images, (b) images containing artificial hairs and the corresponding ground-truth masks (c).



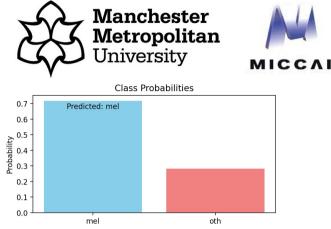
Jaworek-Korjakowska, J., Wojcicka, A., Kucharski, D., Brodzicki, A., Kendrick, C., Cassidy, B. and Yap, M.H., 2022, October. Skin_Hair Dataset: Setting the Benchmark for Effective Hair Inpainting Methods for Improving the Image Quality of Dermoscopic Images. In *European Conference on Computer Vision* (pp. 167-184). Cham: Springer Nature Switzerland. <u>ttps://skin-hairdataset.github.io/SHD</u>/

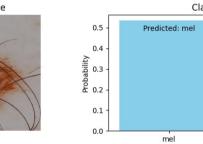
Experiment: Effect of hair on prediction

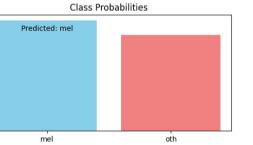
Jaworek-Korjakowska, J., Wojcicka, A., Kucharski, D., Brodzicki, A., Kendrick, C., Cassidy, B. and Yap, M.H., 2022, October. Skin_Hair Dataset: Setting the Benchmark for Effective Hair Inpainting Methods for Improving the Image Quality of Dermoscopic Images. In *European Conference on Computer Vision* (pp. 167-184). Cham: Springer Nature Switzerland. <u>https://skin-hairdataset.github.io/SHD</u>/

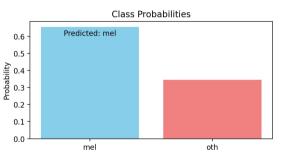


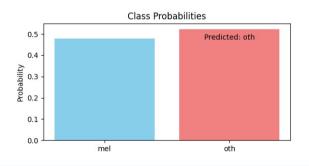


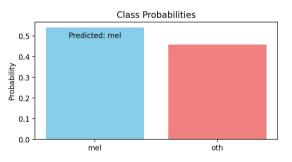












DCA Types Labelling

Sizing categories recommended by Sies et al. used:

- Small = 1-24% (inclusive)
- Medium = 25-49% (inclusive)
- Large = 50%+ (inclusive)
- Other = <1% (exclusive)

Other is an extra category added to highlight images which may be difficult to detect.

DCA		DCA Type			
Туре	Train Mel	Train Oth	Val Mel	Val Oth	Totals
Small DCA	742	237	167	58	1204
Medium DCA	393	79	95	16	583
Large DCA	343	78	80	25	526
Other	179	57	63	19	318
Dataset Totals	1657	451	405	118	2631

Pewton, S.W. and Yap, M.H., 2022. Dark corner on skin lesion image dataset: Does it matter?. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4831-4839).

DCA Removal: Does it work?

Pewton, S.W. and Yap, M.H., 2022. Dark corner on skin lesion image dataset: Does it matter?. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 4831-4839).

DCA Removal: Friend or Foe?

Research question: Is removal and inpainting dark corner artifacts, with the intention of creating an ideal condition for models, the best solution?

Previous research has shown to be inconclusive due to a lack of available datasets with corresponding labels for dark corner artifact cases.

Research idea: Introduce synthetic dark corner artifacts and superimpose onto the training set to improve the performance.

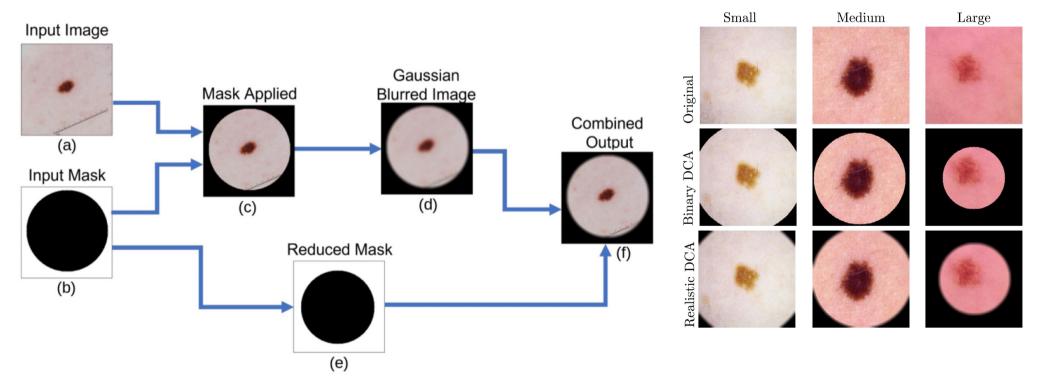
Which preprocessing method provides the best results: inpainted DCA or superimposed synthetic DCA?

DCA Removal: Friend or Foe?

Curated balanced datasets from ISIC and Fitzpatrick 17k datasets. **Training set** (train and val): clean datasets (without DCA). **Testing set**: datasets with DCA, curated from ISIC and Fitzpatrick 17k.

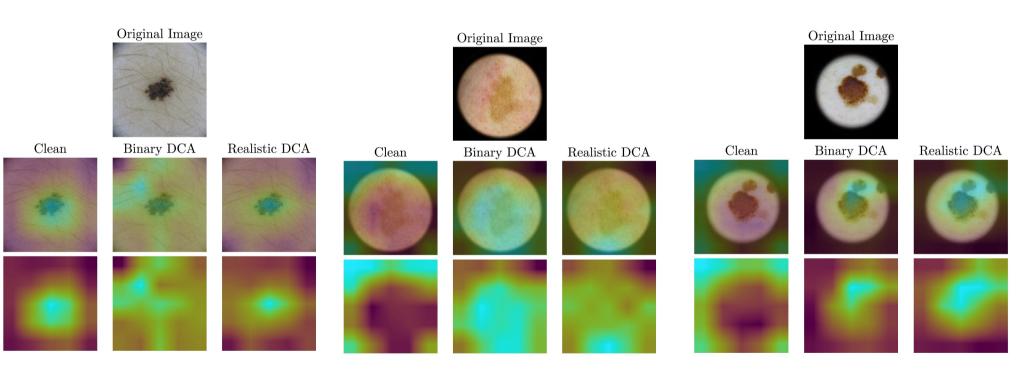
Summary of the DCA Split Balanced Dataset which contains a total of 10,250 images. Mel - melanoma; Non-Mel - Non-melanoma.

Training set		Testing set (DCA sizes)				
rain	Val	Small	Medium	Large	Other	
				423	242 242	
	ain 1 56 3	ain Val 56 307	ain Val Small 56 307 909	ain Val Small Medium 756 307 909 488	ain Val Small Medium Large 256 307 909 488 423	



Realistic DCA Creation

Results



The performance of all trained networks (clean model, superimposed binary DCA model and superimposed realistic DCA model) on the test set.

Model	Metrics	Metrics						
	Acc	TPR	TNR	Precision	F1	AUC		
Clean	0.57	0.90	0.23	0.54	0.68	0.61		
Binary DCA	0.60	0.91	0.29	0.56	0.70	0.66		
Realistic DCA	0.61	0.73	0.49	0.59	0.65	0.66		

Results

The performance of the best TNR from the inpainted method and the superimposed method on the test set with different DCA sizes.

DCA size	Method	Metrics					
		Acc	TPR	TNR	Precision	F1	AUC
Small	Inpainted	0.58	0.87	0.30	0.55	0.67	0.62
	Superimposed	0.60	0.85	0.35	0.57	0.68	0.65
Medium	Inpainted	0.59	0.88	0.30	0.56	0.68	0.66
	Superimposed	0.64	0.75	0.53	0.62	0.68	0.70
Large	Inpainted	0.61	0.72	0.50	0.59	0.65	0.68
	Superimposed	0.60	0.39	0.80	0.66	0.50	0.63
Other	Inpainted	0.57	0.87	0.27	0.54	0.67	0.65
	Superimposed	0.60	0.83	0.36	0.57	0.67	0.67

- DCA regions may exhibit artifacts that were not visible to the human eye where the deep learning model might tend to use those features for decision making.
- The focus is on the region of interest (skin lesions), there is an apparent randomness in the predictions due to the challenging nature of melanoma classification.
- As external ocular images exist in different imaging for other applications, such as eye imaging and colon imaging, this study potentially can be expanded in other domains.

Future Directions

- Multimodal Datasets CM-CBD-17K dataset (Ongoing) and ISIC 2024 Challenge
- Domain adaptation clinical images and dermoscopic images
- Self-supervised learning / unsupervised learning methods
- Alignment with Clinical practices
- Engage with ISIC AI Working Group

Moi Hoon Yap M.Yap@mmu.ac.uk @moihoonyap

Collaborators:

Code:

https://github.com/mmu-dermatology-research/ https://github.com/mmu-dermatology-research/dark_corner_artifact_removal https://skin-hairdataset.github.io/SHD/

