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Motivation
Training on HAM, OQD: ISIC 2018
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Agenda

General procedure for bias investigations
Problem Characterization
Debiasing
Evaluation

BiasPrune



Define the problem through a causal graph

Artifacts Qed by the@

Skin Lesion
Images

Disease
Features

ones, Charles, et al. "A causal perspective on dataset bias in machine learning for medical imaging." Nature Machine Intelligence 6.2 (2024)



Define the problem through a causal graph
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Jones, Charles, et al. "A causal perspective on dataset bias in machine learning for medical imaging." Nature Machine Intelligence 6.2 (2024)



Define the problem through a causal graph
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Jones, Charles, et al. "A causal perspective on dataset bias in machine learning for medical imaging." Nature Machine Intelligence 6.2 (2024)



How to avoid learning from artifacts
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Jones, Charles, et al. "A causal perspective on dataset bias in machine learning for medical imaging." Nature Machine Intelligence 6.2 (2024)



Domain generalization data is too simple
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Difficulty of learning complex relevant features

(224 x 224 x 3) (28 x 28 x 3)

0.912 AUC 0.913 AUC
0.731 ACC 0.735 ACC

Abhishek, K., Jain, A., & Hamarneh, G. (2024). Investigating the Quality of DermaMNIST and Fitzpatrick17k Dermatological Image Datasets.



Causal Representation of Artifact Bias
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Characterization of disease features

Segmentation masks Clinical attributes
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SkinCon: A skin disease dataset densely annotated by

domain experts for fine-grained model debugging and
analysis

Roxana Daneshjou'* Mert Yuksekgonul®*
Zhuo Ran Cai'! Roberto Novoa! James Zou?
! Department of Dermatology, Stanford University

2 Nenartment of Coamnnter Science Stanfard TTnivercity




How to measure bias reliance?
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Jones, Charles, et al. "A causal perspective on dataset bias in machine learning for medical imaging." Nature Machine Intelligence 6.2 (2024)



Make use of metadata annotations (and create your own!)

Artifacts Artifact presence

corner X

hair X

ruler
ink X

Dark Corners

: %

Ruler Ink markings

Artifact location

Bissoto, Alceu, et al. "Test-Time Selection for Robust Skin Lesion Analysis.”, ISIC @ MICCAI 2023
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Make use of metadata annotations (and create your own!)

Artifact presence

corner X Q .‘g
r X

hair
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ruler v/ Subgroups

ink X

6200

Bissoto, Alceu, et al. "Test-Time Selection for Robust Skin Lesion Analysis.”, ISIC @ MICCAI 2023
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Look for perf. disparities across subgroups
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Combalia et al., "Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge”, The Lancet, 2022



Look for perf. disparities across subgroups
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Combalia et al., "Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge”, The Lancet, 2022



Look for perf. disparities across subgroups

inflated performances
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Combalia et al., "Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge”, The Lancet, 2022



Look for perf. disparities across subgroups

inflated performances

AVG Recall Melanomas with Melanomas in
Melanoma Pen Markings Palms and Soles

-
~
—
O
O
W
P —
o
oo
=

------------------------------------

(on training) pen
markings are more
common in AK/BCC

(on training) lesions in
palms or soles are more
frequent to be melanoma

19

Combalia et al., "Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge”, The Lancet, 2022



Artifact debiasing solved the generalization problem?

* (Gaining robustness to artifacts did not lead to more robust representation in
general. What happens in out-of-distribution scenarios is uncertain.
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Artifact debiasing solved the generalization problem?

* (Gaining robustness to artifacts did not lead to more robust representation in
general. What happens in out-of-distribution scenarios is uncertain.
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BiasPrune: Debiasing from features alone

A complementary approach

Nourhan Bayasi Jamil Fayyad? Alceu Bissoto3 Ghassan Hamarneh4 Rafeef Garbit

27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
October 8th, 2024
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Problem Setup - Fitzpatrick17k

Sensitive Attribute: Skin Tone | Continual Learning
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Problem Setup - Fitzpatrick17k

Sensitive Attribute: Skin Tone | Continual Learning
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The Motivation — Can Forgetting Be Good?

Intentionally forget the shortcuts!

BiasPruner

It’'s a CL method that leverages forgetting to improve
fairness while still ensuring the model doesn’t forget
the important things it has learned.




Steps to Find Debiased Subnetwork

1. Measure the bias score of each unit
a. Encourage the network to be biased.
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Steps to Find Debiased Subnetwork

1. Measure the bias score of each unit

b. For each class, find the easy and hard image sets. (based on errors
and confidence)

/ Easy samples \
Class target A ("ot m mm '
O Casstageta ol gy

C
Class target B R '
)
\\.l &
m . @
N o@ >
s
1@ >
3 L
‘ Sensitive 1 B |

| t I
@ Sensitive 2 ' ?-_[f_ _9 __._ r
Hard samples




Steps to Find Debiased Subnetwork

1. Measure the bias score of each unit

c. Rank the units most sensitive to easy (biased) samples, and least
sensitive to hard samples. The highest ones are biased.
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Steps to Find Debiased Subnetwork

2. Prune units with high bias scores
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Steps to Find Debiased Subnetwork

3. Finetune the subnetwork with weighted CE loss
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BiasPrune

Performance Results for Fitzpatrick17k

Improved Performance per
subgroup and overall

Improved Fairness measurements Less Bias is Encoded
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BiasPrune

Fairness Results for Fitzpatrick17k

Improved Performance per
subgroup and overall

Equal Opportunity
Difference (EOD)

Improved Fairness measurements Less Bias is Encoded
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BiasPrune
Bias Decodability
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Discussion / Takeaways

1. Define the possibly biased data/problem with causal graphs
2. Make use of the metadata available to incorporate subgroup evaluation

3. The literature is moving towards a mix of bias of interest and learned bias
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Code, Data & Papers:
https://github.com/alceubissoto/
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https://github.com/alceubissoto/skin-tts

