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Guiding Models to Mitigate Bias 
in Skin Lesion Analysis
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Agenda

General procedure for bias investigations

Problem Characterization

Debiasing

Evaluation


BiasPrune



Define the problem through a causal graph
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Jones, Charles, et al. "A causal perspective on dataset bias in machine learning for medical imaging." Nature Machine Intelligence 6.2 (2024)
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How to avoid learning from artifacts
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• Domain generalization


• Invariant representation learning


• Disentanglement

Jones, Charles, et al. "A causal perspective on dataset bias in machine learning for medical imaging." Nature Machine Intelligence 6.2 (2024)



Domain generalization data is too simple
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Difficulty of learning complex relevant features
(28 x 28 x 3)(224 x 224 x 3)

Abhishek, K., Jain, A., & Hamarneh, G. (2024). Investigating the Quality of DermaMNIST and Fitzpatrick17k Dermatological Image Datasets.

0.912 AUC 0.913 AUC
0.731 ACC 0.735 ACC



Causal Representation of Artifact Bias

Skin Lesion 
Images

Artifacts

Disease 
Features

Underlying 
Condition

Biopsy 
Diagnosis

Hospital’s 
participation on 

the dataset*

Hospital’s image 
acquisition 
procedure

selection bias

X (input)

Y (output)

• Domain generalization


• Invariant representation learning


• Disentanglement
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Characterization of disease features
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How to measure bias reliance?
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Jones, Charles, et al. "A causal perspective on dataset bias in machine learning for medical imaging." Nature Machine Intelligence 6.2 (2024)
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• Subgroup performance 
evaluation


• Out-of-distribution evaluation


• Bias decodability


• Explainable AI



Make use of metadata annotations (and create your own!)
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Bissoto, Alceu, et al. "Test-Time Selection for Robust Skin Lesion Analysis.”, ISIC @ MICCAI 2023



Make use of metadata annotations (and create your own!)
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Bissoto, Alceu, et al. "Test-Time Selection for Robust Skin Lesion Analysis.”, ISIC @ MICCAI 2023



Look for perf. disparities across subgroups 
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Artifact debiasing solved the generalization problem?

• Gaining robustness to artifacts did not lead to more robust representation in 
general. What happens in out-of-distribution scenarios is uncertain. 
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BiasPrune: Debiasing from features alone
A complementary approach

27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 
October 8th, 2024

Jamil Fayyad2Nourhan Bayasi1 Ghassan Hamarneh4 Rafeef Garbi1Alceu Bissoto3
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The Motivation – Can Forgetting Be Good?

BiasPruner

Intentionally forget the shortcuts!

BiasPruner
It’s a CL method that leverages forgetting to improve 
fairness while still ensuring the model doesn’t forget 
the important things it has learned.



1. Measure the bias score of each unit
a. Encourage the network to be biased.

Steps to Find Debiased Subnetwork 
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1. Measure the bias score of each unit
a. Encourage the network to be biased.
b. For each class, find the easy and hard image sets.
c. Rank the units most sensitive to easy (biased) samples, and least sensitive to hard samples. The highest ones are biased.

2. Prune units with high bias score 
3. Finetune the subnetwork with weighted CE loss 

Debiased
 subnetwork! 

Steps to Find Debiased Subnetwork 



BiasPrune
Performance Results for Fitzpatrick17k

Improved Performance per 
subgroup and overall Improved Fairness measurements Less Bias is Encoded
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Accuracy



BiasPrune
Fairness Results for Fitzpatrick17k

Improved Performance per 
subgroup and overall Improved Fairness measurements Less Bias is Encoded

Equal Opportunity 
Difference (EOD)
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52% 

14% 
22% 

23% 



BiasPrune
Bias Decodability

Improved Performance per 
subgroup and overall Improved Fairness measurements Less Bias is Encoded

Skin tone Age

Feature Extractor

Linear Layer

Fitz   
I, II, III

Fitz   
IV, V, VI



Discussion / Takeaways

3. The literature is moving towards a mix of bias of interest and learned bias

2. Make use of the metadata available to incorporate subgroup evaluation

1. Define the possibly biased data/problem with causal graphs 



Code, Data & Papers:
https://github.com/alceubissoto/

Thank you! Alceu Bissoto  alceu.bissoto@unibe.ch
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https://github.com/alceubissoto/skin-tts

