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Additional Features Improve Skin Image Analysis
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Lesion Elevation in Clinical Practice

Asymmetry

e Part of the American Cancer Society’s
ABCDE criteria.

Border irregularity

Color variegation

Diameter larger
than 6 mm

[5] Strayer et al., 2003.
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e The palpation of skin is an important step
in lesion diagnosis, and is often one of the

reasons for dermatologists’ dissatisfaction
with teledermatology.



L esion Elevation in Clinical Practice

Part of the American Cancer Society’s
ABCDE criteria.

The palpation of skin is an important step
in lesion diagnosis, and is often one of the

reasons for dermatologists’ dissatisfaction

with teledermatology.

~ = Journal of the American Academy of

7= s
2N
i) Dermatology

Volume 56, Issue 6, June 2007, Pages 949-951

Report

A literally blinded trial of palpation in
dermatologic diagnosis
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RESULTS

In 14 of 16 cases, the correct diagnosis was chosen
(P = .012, x° test). The incorrect diagnoses were
multiple small lesions of psoriasis that had been
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training per year.”> By comparison, dermatologists’
criticisms were usually concerned with picture quality,
lack of rapport with patients, inability to palpate lesions or
carry out diagnostic tests and that the systems were time-
consuming and unsatisfying.””"**>” In a study using high
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Palpation of the skin—an important issue

Neil H Cox

adequately close to show fine detail. Also, even good quality photos are two-
dimensional; raised lesions of urticaria, for example, may be difficult to
distinguish from flat lesions of a similar colour, and quality of scaling can only
be guessed at. Touching the skin is a modality that is omitted in
teledermatology, but there are clearly situations where it can be important.
Indeed, the inability to palpate lesions has also been given as a reason for
dermatologists being less satisfied than primary care physicians with the
results of teledermatology.” Even enthusiasts admit that this can be a problem.




Lesion Elevation in Clinical Practice

e Part of the American Cancer Society’s
ABCDE criteria.

e The palpation of skin is an important step
in lesion diagnosis, and is often one of the

reasons for dermatologists’ dissatisfaction
with teledermatology.

Lesion elevation information as a proxy for in-person palpation may benefit
teledermatology.



Lesion Elevation in Deep Learning-based Methods
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3.4 | Patient profile

Patient profile information consists of lesion location, lesion size, le-

sion elevation (a binary variable indicating whether the lesion is flat or

elevated) along with age and gender of the patients. Figure 7 demon-
%\/\_/

As it can be seen from Table 1, integrating the condensed feature

maps with patient information increases the diagnosis accuracy of

BCC. The BCC lesions of our dataset are mostly of the nodular type,
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Seven-Point Checklist and Skin Lesion Classification
Using Multitask Multimodal Neural Nets

Publisher: IEEE | Cite This
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2) Classify Using Image and Meta-Data: As the meta-data
(gender, lesion location, and lesion elevation) 1s categorical, we
one-hot encode the meta-data to produce a meta-data vector.

ible under dermoscopy. The classification layer that uses clin-
ical, dermoscopic, and meta-data together yields the highest
average accuracy. However, we note including clinical images
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Lesion Elevation in Deep Learning-based Methods
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The impact of patient clinical information
on automated skin cancer detection
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“
We summarize the presented analysis as follows:

« It is expected that these features improve the model performance
for pigmented and non-pigmented lesions detection.

« Certain features, such as a change in the lesion pattern and
elevation are important for MEL detection.

scientific reports

Article | Open access \ Published: 08 April 2021

Predicting the clinical management of skin
lesions using deep learning
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evaluate our prediction models. The dataset contains clinical and dermoscopic images of skin
lesions, patient metadata (patient gender and the location and the elevation of the lesion), the
corresponding seven-point criteria” for the dermoscopic images, and the diagnosis and the
management labels for 1011 cases with mean [standard deviation] age of 28.08 [18.70] years;
489 males (48.37%); 294 malignant cases (29.08%); skin lesion diameter of 8.84 [5.39] mm.

3. The inclusion of patient metadata may improve the management prediction accuracy. When
using only clinical images (‘CM’ versus ‘C’), only dermoscopic image (‘DM’ versus ‘D’), or both
(‘CDM’ versus ‘CD’), all but one metrics improved with the inclusion of metadata by
2.23 4 2.68%, with the most impactful contribution of metadata being in the 10.63%
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e | earning-based methods to predict lesion elevation.

e Assessing if elevation alone can improve lesion diagnosis performance.
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Inset figure courtesy of Melanoma Institute Australia [6].
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Can we use off-the-shelf depth prediction models trained on
natural images?
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[7] Ranftl et al., 2022.
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Can we use off-the-shelf depth prediction models trained on
natural images?

No, because:

e natural images scenes generally have a depth anisotropy.

e considerable difference in scale between natural images’ depths (typically in
meters) and skin lesions’ elevations (typically in millimeters).
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Elevation labels in derm7pt - Diagnosis-wise distribution
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Can we predict skin lesion elevation labels from images alone?

A\

Fi = Q(Xz'§¢)
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Can we predict skin lesion elevation labels from images alone?

N | | }
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Can we predict skin lesion elevation labels from images alone?

A\

Ly = g(Xi; 9)
e MobileNetV2 e EfficientNet-B0O e DenseNet-121
e MobileNetV3L e EfficientNet-B1 e VGG-16
VGG-16 Accuracy
Clinical Images 0.8543
Dermoscopic Images 0.8475

e ResNet-18
e ResNet-50

AUROC
0.8220

0.8152
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Dermoscopic

Clinical

Can we predict skin lesion elevation labels from images alone?

Activation maps (GradCAM) localize the lesion well, despite artifacts.

flat flat palpable palpable nodular




Do ground truth elevation labels help improve diagnosis?
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Do ground truth elevation labels help improve diagnosis?

Yg = fpe (X; ® E;;Opg)

Clinical Images Dermoscopic Images
VGG-16
Accuracy AUROC Accuracy AUROC
Without ground 0.8464 0.6331 0.9137 0.8431
truth elevation
With ground 0.8569 0.6820 0.9216 0.8703

truth elevation
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Do ground truth elevation labels help improve diagnosis?

Yz = fpe (X; ® E;;Opg)

Clinical Images Dermoscopic Images
VGG-16
Accuracy AUROC Accuracy AUROC
Without ground 0.8464 0.6331 0.9137 0.8431
truth elevation
With ground 0.8569 0.6820 0.9216 0.8703

truth elevation

Improvement ;| 1.05% 4.89% 0.79% 2.72%
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Can Iinferred elevation labels improve lesion diagnosis?
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Can Iinferred elevation labels improve lesion diagnosis?

| | !
- . ) Diagnosis prediction model
\ Yi = fpe(Xi ® E;Opg) Verages

that leverages inferred elevation

Predicted _
diagnosis Inferred elevation label

e Soft: [0.1, 0.7, 0.2]
e Discrete: [0., 1., 0.]
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Can Iinferred elevation labels improve lesion diagnosis?
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Can inferred elevation labels improve lesion diagnosis?
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Can inferred elevation labels improve lesion diagnosis?
?;3 = fpp(Xi @ Ei? Opg)

m No elevation = Inferred "soft" elevation = Inferred "discrete" elevation

0.90 Statistical Significance Tests:
0.85 McNemar’s mid-p: AUROC
5 improvements stat. sig. (p < 0.05)
8 0.80 for all datasets except ISIC 2016.
=
0.75 Cohen’s d: “small” effect size for ISIC
2016, “huge” effect sizes for all
0.70 I other datasets.
0.65 I

DermoFit ISIC 2016 ISIC 2017 ISIC 2018 48



Conclusion

Can we estimate lesion elevation from skin lesion images alone?
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Conclusion

Can we estimate lesion elevation from skin lesion images alone?

It is possible to predict image-level skin lesion elevation labels directly from
2D RGB images with sufficient accuracy.
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Conclusion

Can we estimate lesion elevation from skin lesion images alone?
Can ground truth lesion elevation alone, as a meta-data, improve diagnosis?
Can we rely on estimated lesion elevation to improve diagnosis?

On datasets without ground truth elevation labels, estimated elevation labels
may help improve lesion diagnhosis.
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Conclusion

Can we estimate lesion elevation from skin lesion images alone?

Can ground truth lesion elevation alone, as a meta-data, improve diagnosis?

Can we rely on estimated lesion elevation to improve diagnosis?

The ability to predict and leverage elevation from 2D images may offer the
potential to improve teledermatology consultations by offering previously
unavailable clinical information.
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