

Ninth ISIC Skin Image Analysis Workshop @ MICCAI 2024

Segmentation Style Discovery: **Application to Skin Lesion Images**

Kumar Abhishek[†]

Jeremy Kawahara[‡]

Ghassan Hamarneh[†]

Variability in Medical Image Segmentation

Ambiguous object boundaries

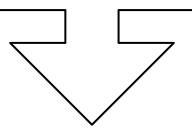
Annotators' personal preferences

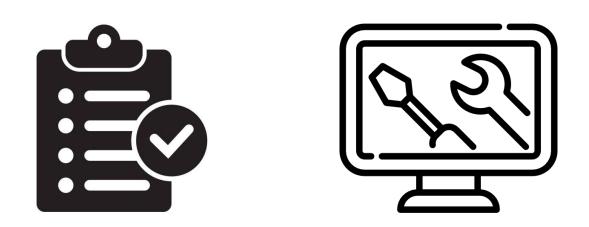
Annotators' skill levels

Segmentation criteria

Segmentation tools

Variability in Medical Image Segmentation

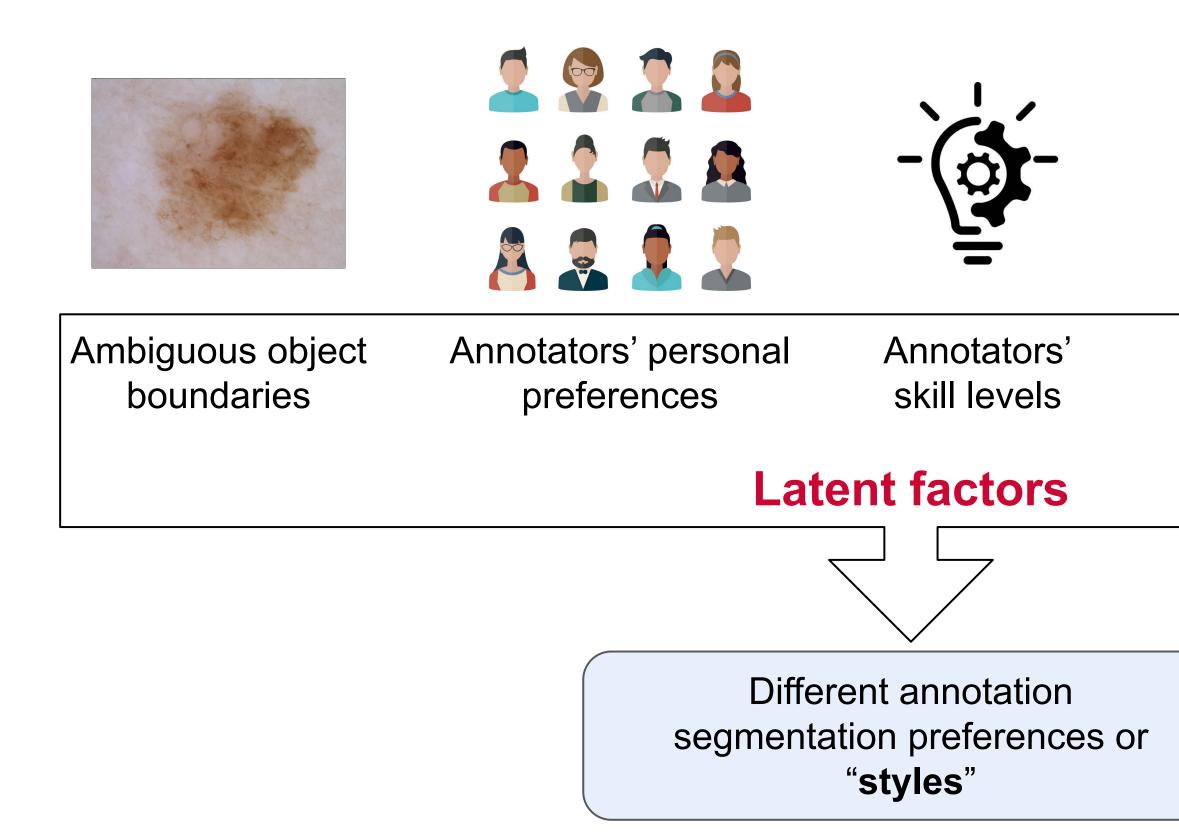


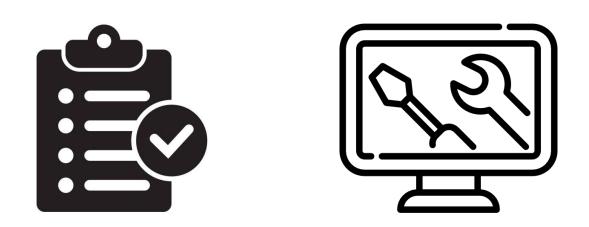

Ambiguous object boundaries

Annotators' personal preferences

Annotators' skill levels

Latent factors





Segmentation criteria

Segmentation tools

Variability in Medical Image Segmentation

Segmentation criteria

Segmentation tools

SSeg methods model and learn to predict a single "gold standard" segmentation.

SSeg methods model and learn to predict a single "gold standard" segmentation.

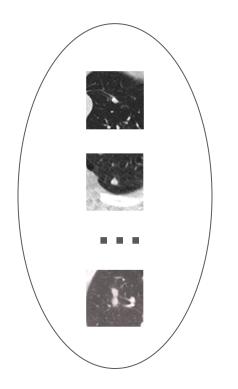
Abstract—In a double blind evaluation of 60 digital dermatoscopic images by 4 "junior", 4 "senior" and 4 "expert" dermatologists (dermatoscopy training respectively less than 1 year, between 1 and 5 years, and more than 5 years), a significant inter-operator variability was observed in melanocytic lesion border identification (with a disagreement of the order of 10 - 20% of the area of the lesions). Expert dermatologists

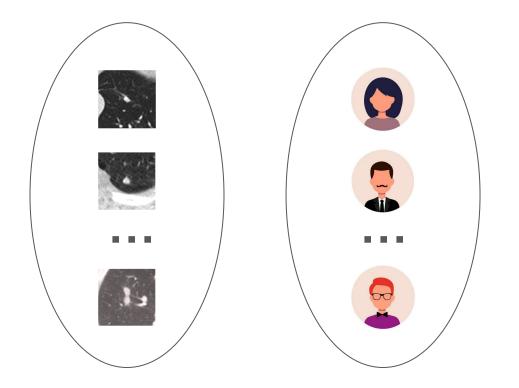
dard operative definition. For example, if even experienced dermatologists disagree on how to classify 5% of the area of an image, no automated system can be expected to classify "correctly" more than 95% of the area of that image.

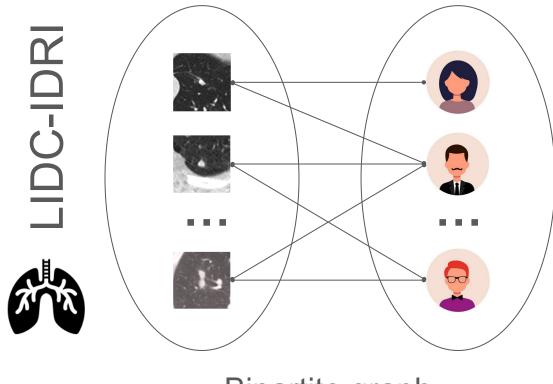
SSeg methods model and learn to predict a single "gold standard" segmentation.

Abstract—In a double blind evaluation of 60 digital dermatoscopic images by 4 "junior", 4 "senior" and 4 "expert" dermatologists (dermatoscopy training respectively less than 1 year, between 1 and 5 years, and more than 5 years), a significant inter-operator variability was observed in melanocytic lesion border identification (with a disagreement of the order of 10 - 20% of the area of the lesions). Expert dermatologists

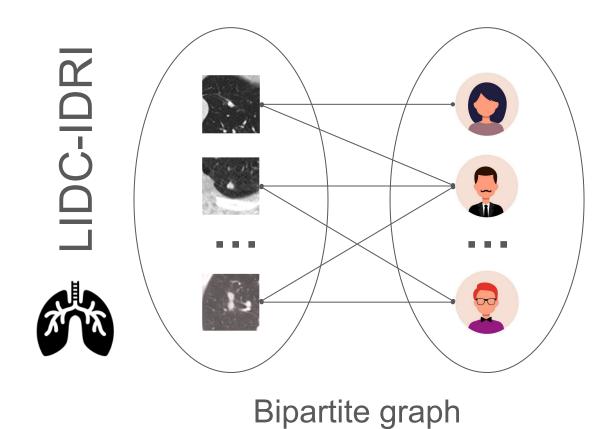
dard operative definition. For example, if even experienced dermatologists disagree on how to classify 5% of the area of an image, no automated system can be expected to classify "correctly" more than 95% of the area of that image.

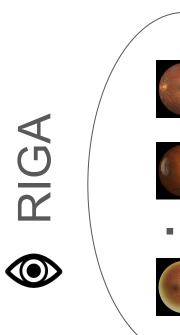

MSeg methods model and predict multiple segmentations to capture annotation variability.

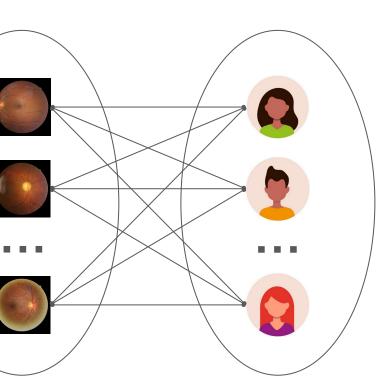

SSeg methods model and learn to predict a single "gold standard" segmentation.

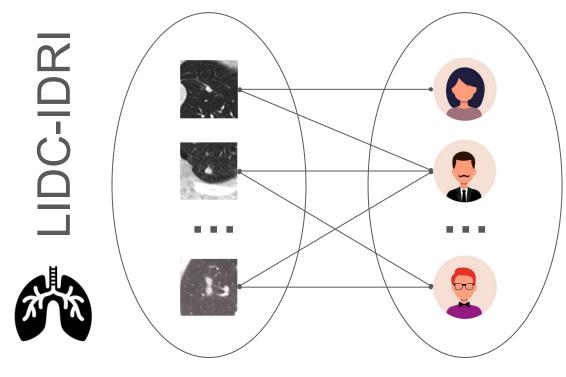

Abstract—In a double blind evaluation of 60 digital dermatoscopic images by 4 "junior", 4 "senior" and 4 "expert" dermatologists (dermatoscopy training respectively less than 1 year, between 1 and 5 years, and more than 5 years), a significant inter-operator variability was observed in melanocytic lesion border identification (with a disagreement of the order of 10 - 20% of the area of the lesions). Expert dermatologists

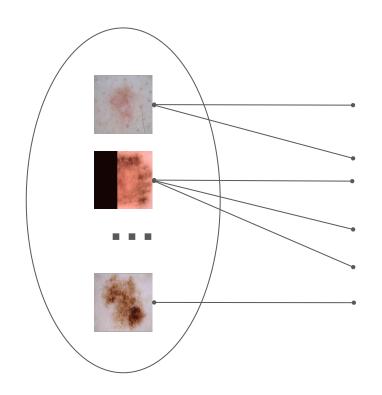
dard operative definition. For example, if even experienced dermatologists disagree on how to classify 5% of the area of an image, no automated system can be expected to classify "correctly" more than 95% of the area of that image.

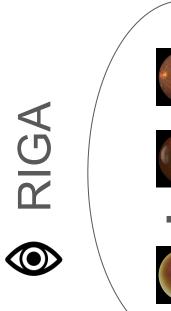

- MSeg methods model and predict multiple segmentations to capture annotation variability.
- **Dataset requirement:**
- multi-annotator segmentations containing image-mask pairs with annotator-segmentation correspondence.

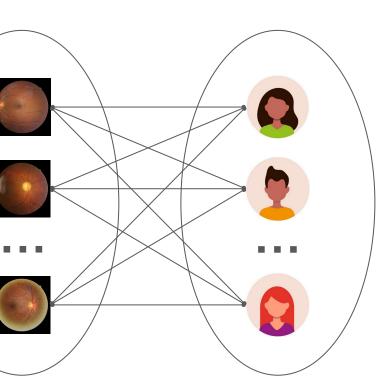


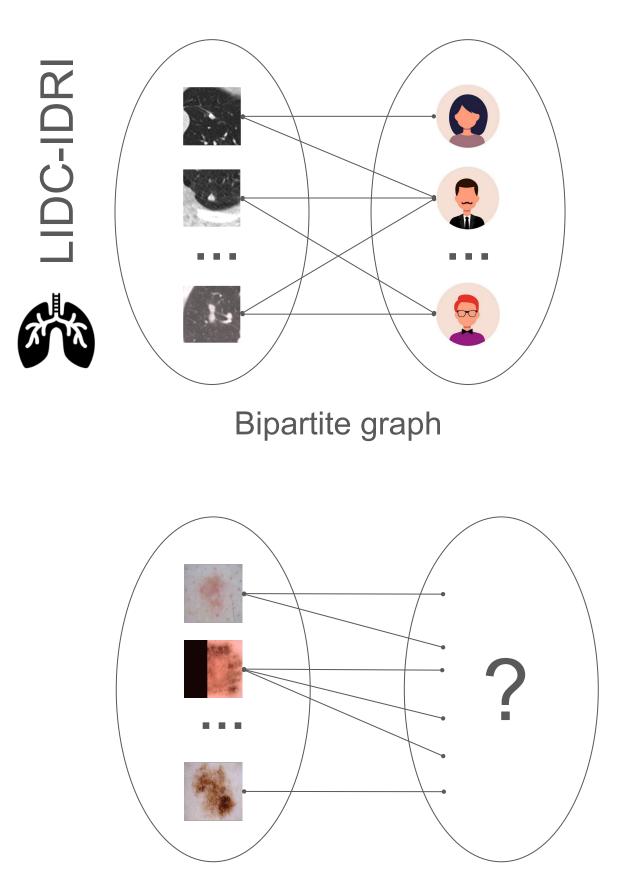


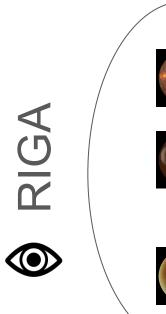

Bipartite graph

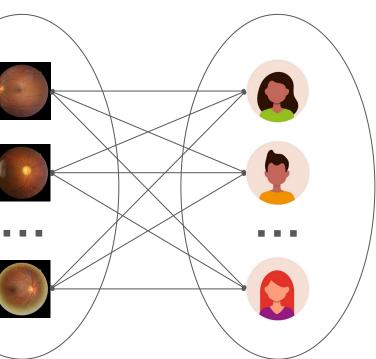




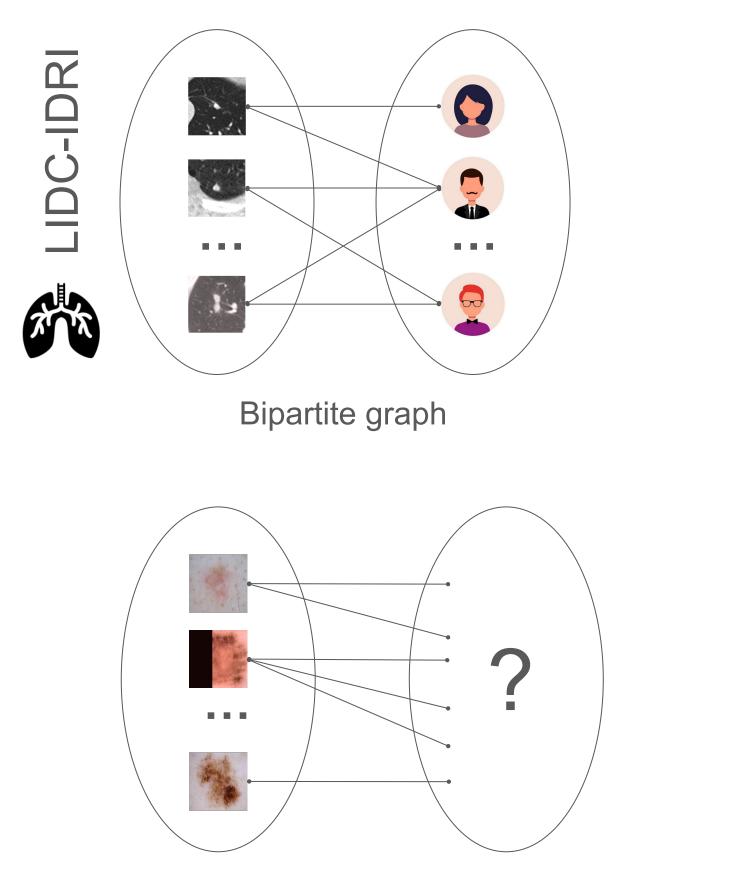

<u>Complete</u> bipartite graph


Bipartite graph

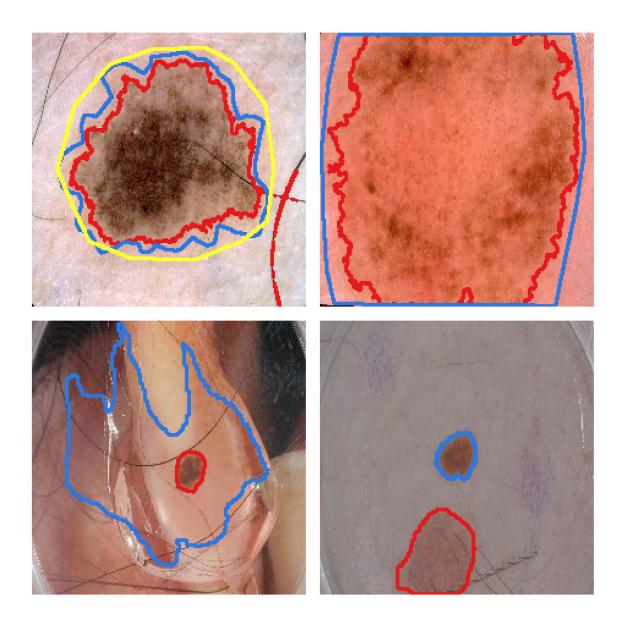




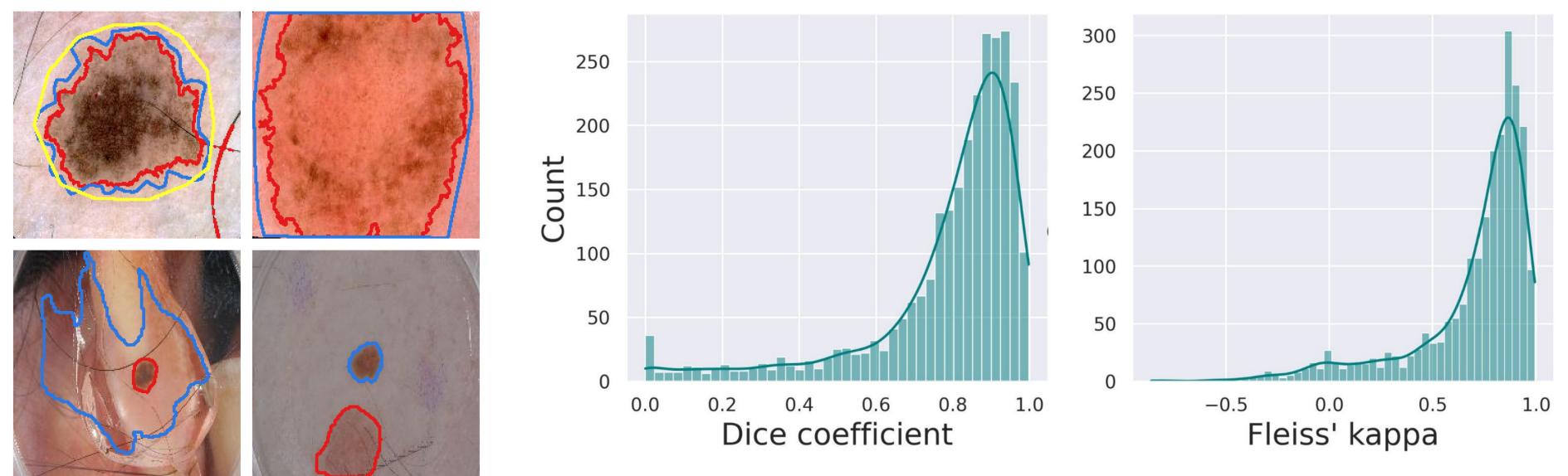
<u>Complete</u> bipartite graph



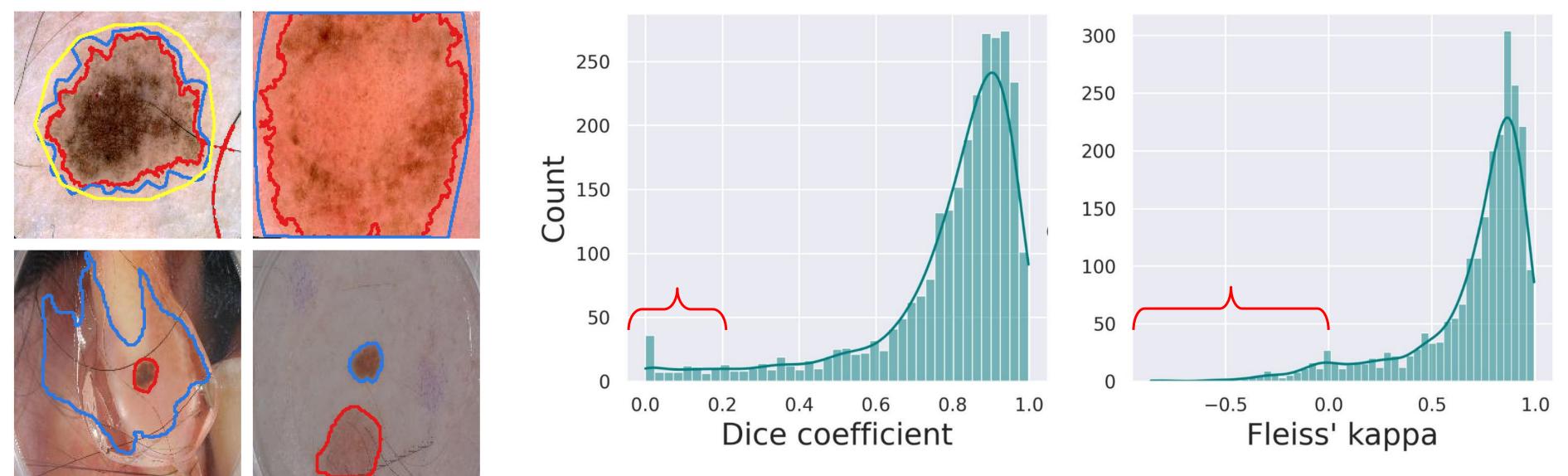
<u>Complete</u> bipartite graph

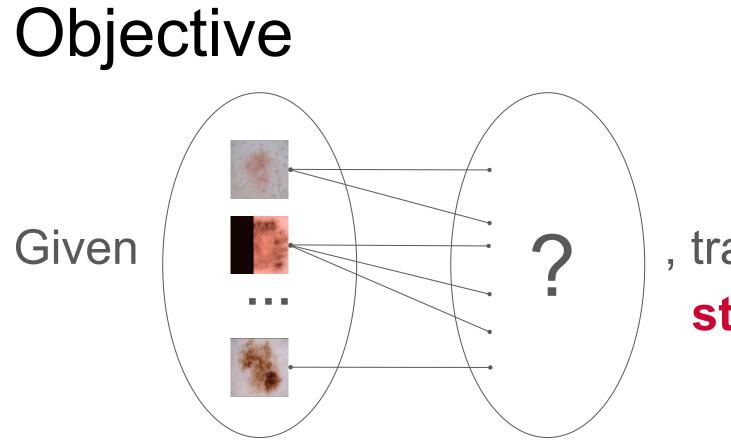


<u>Complete</u> bipartite graph

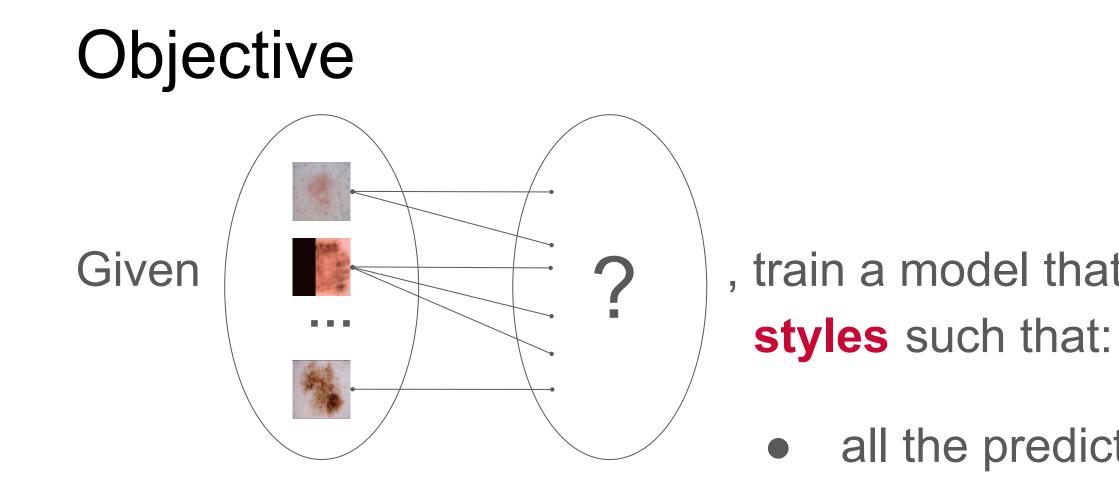

Latent factors unknown \Rightarrow difficult to define a segmentation "style".

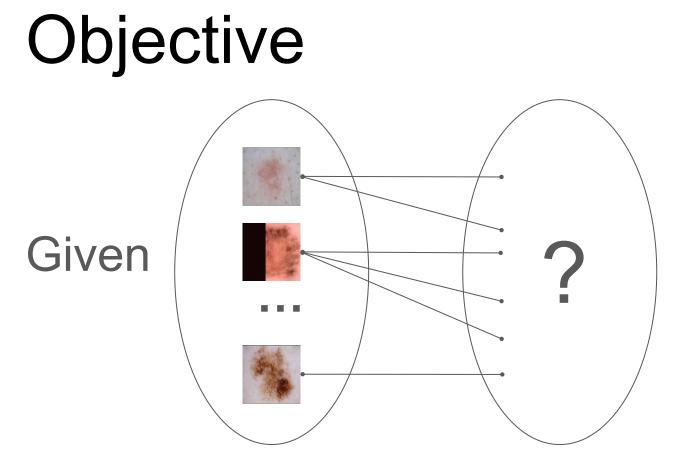
2,261 images with more than 1 "ground truth" segmentation mask \Rightarrow 4,704 training image-mask pairs for skin lesion segmentation (**SLS**).


2,261 images with more than 1 "ground truth" segmentation mask \Rightarrow 4,704 training image-mask pairs for skin lesion segmentation (**SLS**).



2,261 images with more than 1 "ground truth" segmentation mask \Rightarrow 4,704 training image-mask pairs for skin lesion segmentation (SLS).

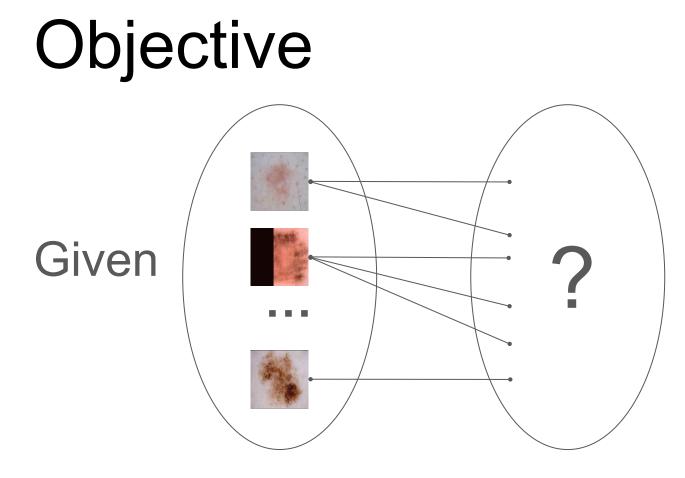

2,261 images with more than 1 "ground truth" segmentation mask \Rightarrow 4,704 training image-mask pairs for skin lesion segmentation (SLS).


, train a model that **dis styles** such that:

, train a model that discovers unique annotation

, train a model that discovers unique annotation

all the predicted segmentations are plausible,

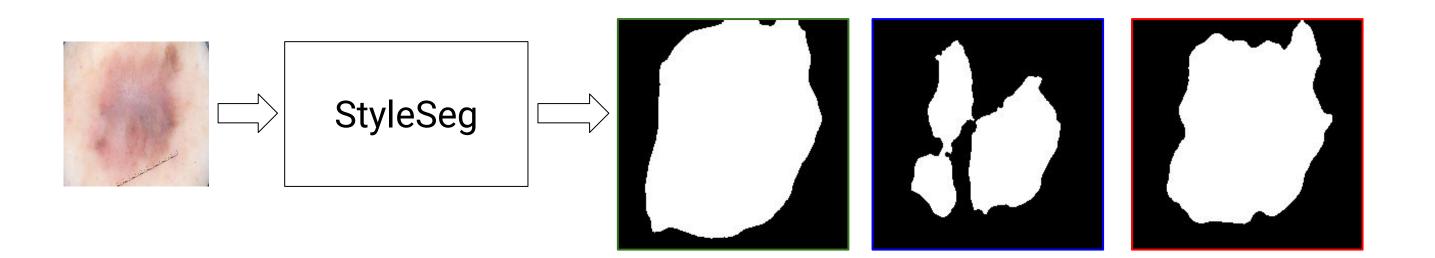


styles such that:

, train a model that discovers unique annotation

all the predicted segmentations are **plausible**,

the predicted segmentations are **diverse**, and



, train a model that **dis styles** such that:

- all the predicted segmentations are plausible,
- the predicted segmentations are diverse, and
- the segmentation styles are **semantically consistent** across all images.

, train a model that discovers unique annotation

StyleSeg produces multiple segmentation styles

Style 1 Style 2

Segmentation Model $f_s(X_i; \Theta_s)$ Style 3

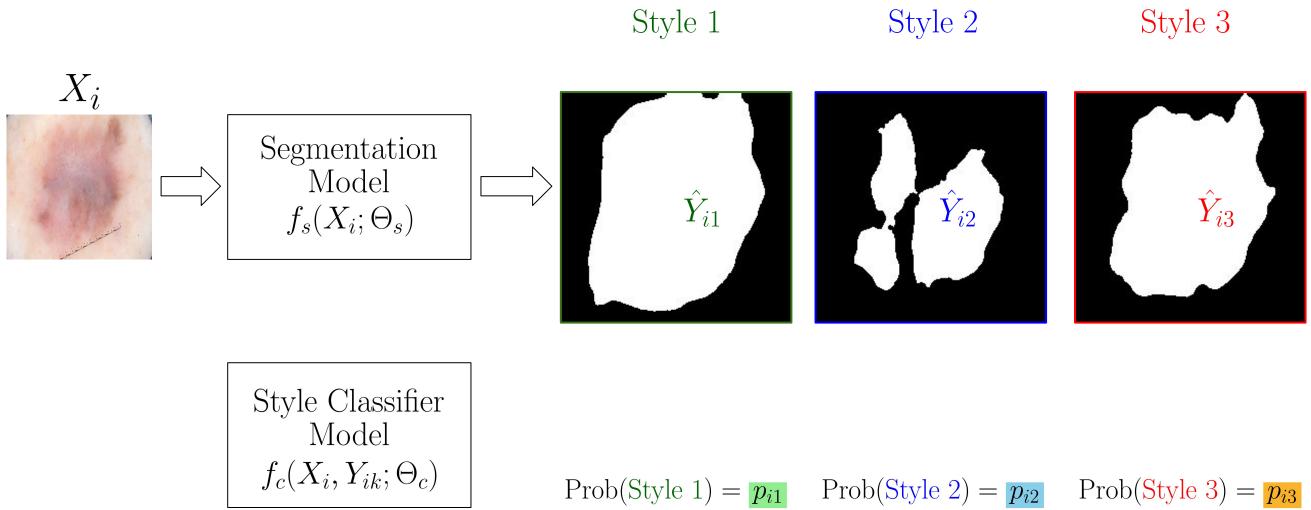
M segmentation styles

Style 1 Style 2

Segmentation Model $f_s(X_i;\Theta_s)$

Style Classifier Model $f_c(X_i, Y_{ik}; \Theta_c)$

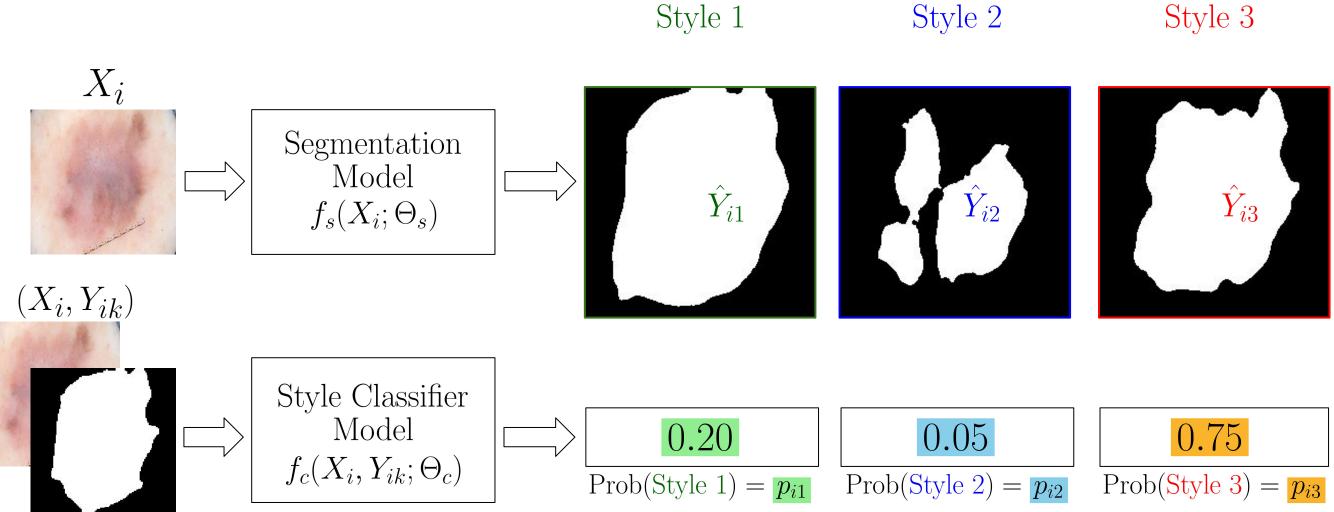
 $Prob(Style 1) = p_{i1}$


 $Prob(Style 2) = p_{i2}$

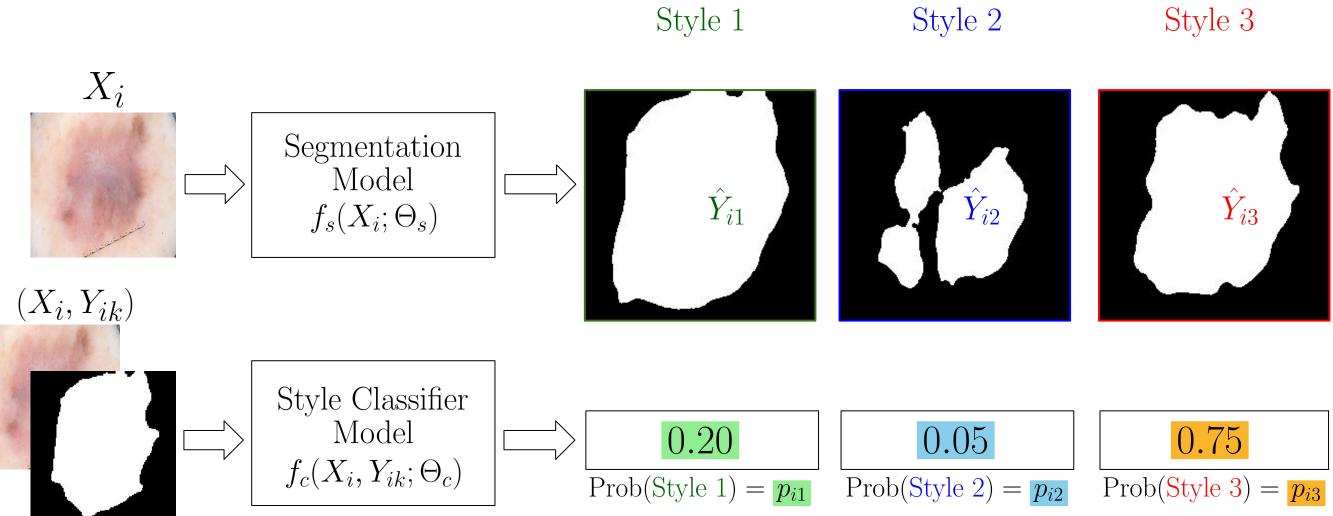
Style 3

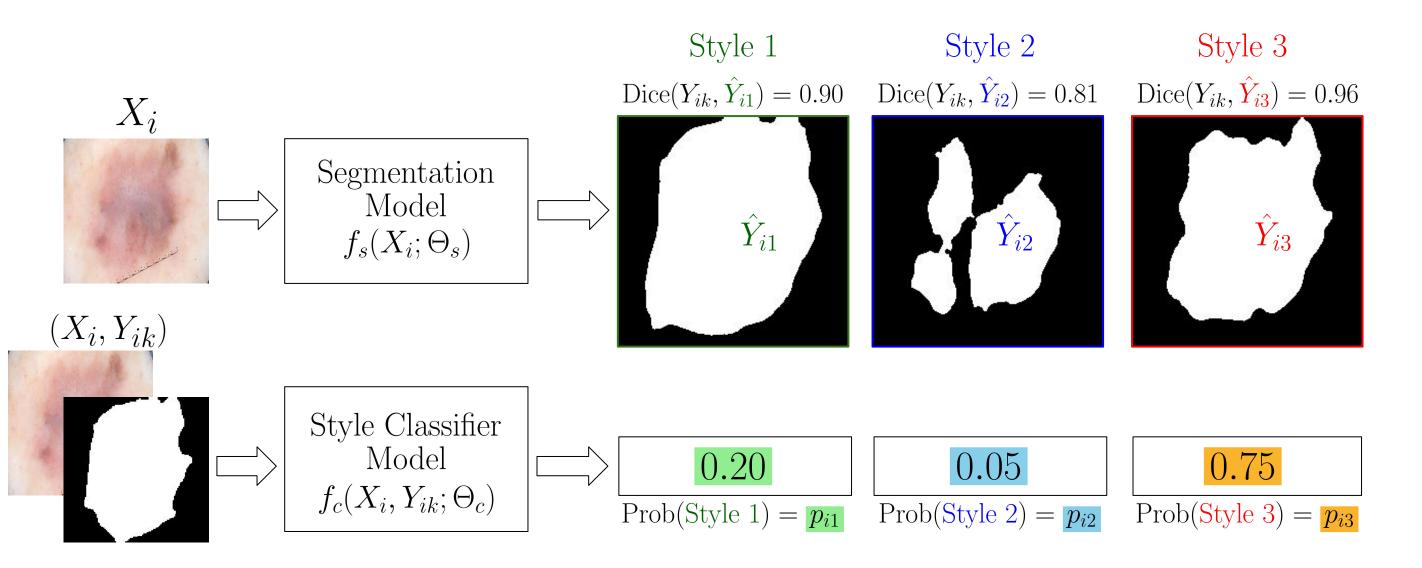
M segmentation styles

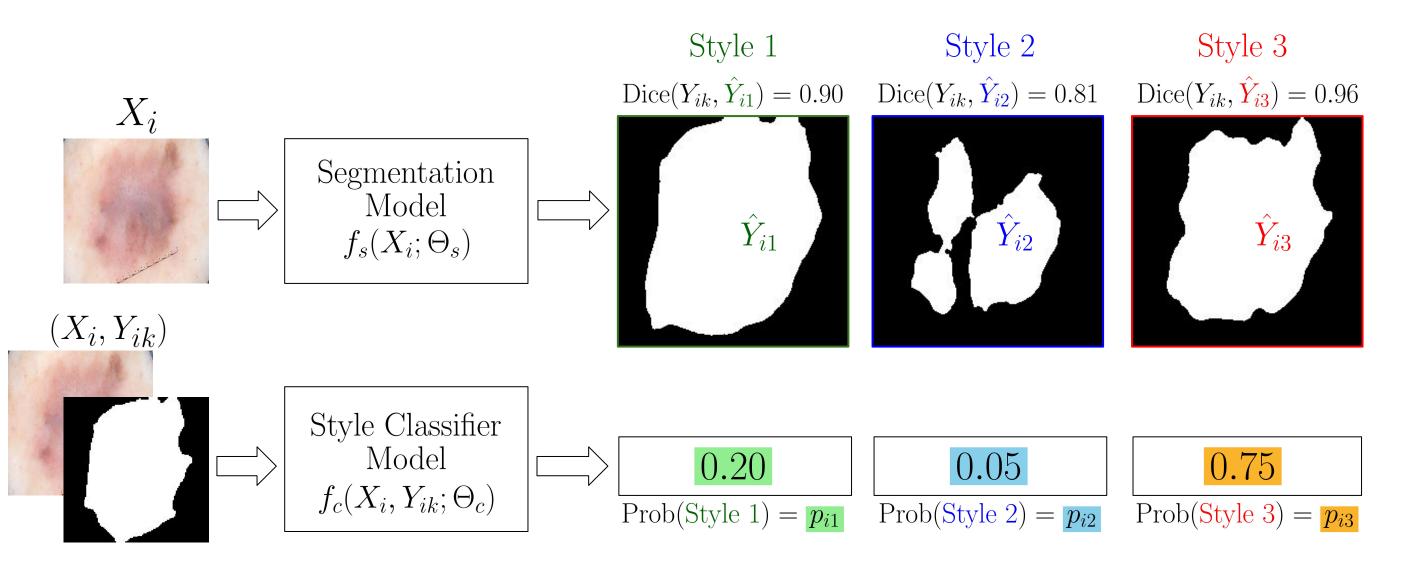
 $\operatorname{Prob}(\operatorname{Style} 3) = p_{i3}$


Probability of each style being the correct style.

M segmentation styles

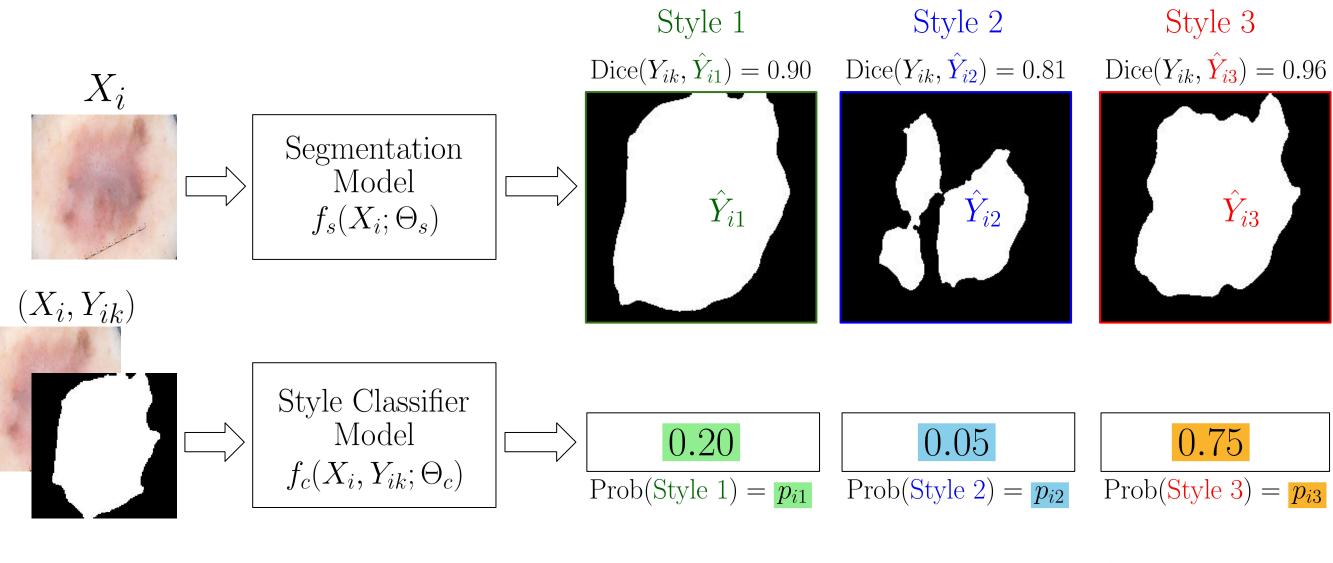

Style 3) =
$$p_{i3}$$


Probability of each style being the correct style.

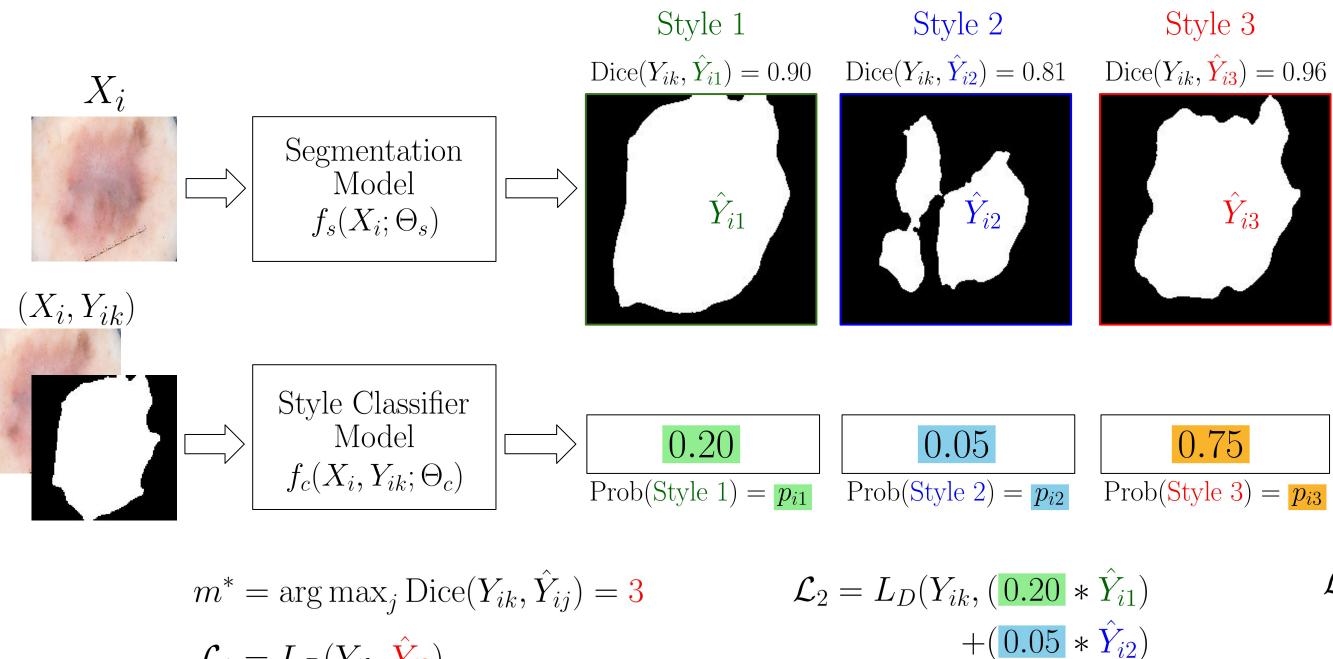


M segmentation styles

Probability of each style being the correct style.



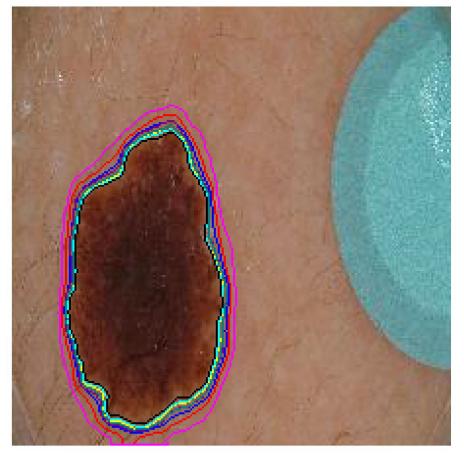
 $m^* = \arg\max_{j} \operatorname{Dice}(Y_{ik}, \hat{Y}_{ij}) = 3$ $\mathcal{L}_1 = L_D(Y_{ik}, \hat{Y}_{i3})$



 $m^* = \arg\max_{j} \operatorname{Dice}(Y_{ik}, \hat{Y}_{ij}) = 3 \qquad \qquad \mathcal{L}_2 = L_D(Y_{ik}, (0.20 * \hat{Y}_{i1}) + (0.05 * \hat{Y}_{i2}) + (0.75 * \hat{Y}_{i3}))$

 $m^* = \arg\max_{j} \operatorname{Dice}(Y_{ik}, \hat{Y}_{ij}) = 3 \qquad \qquad \mathcal{L}_2 = L_D(Y_{ik}, (0.20 * \hat{Y}_{i1}) + (0.05 * \hat{Y}_{i2}) + (0.75 * \hat{Y}_{i3}))$

$\mathcal{L}_3 = L_{CE}(\begin{bmatrix} 0.20, \ 0.05, \ 0.75 \end{bmatrix}, \\ \begin{bmatrix} 0, & 0, & 1 \end{bmatrix})$

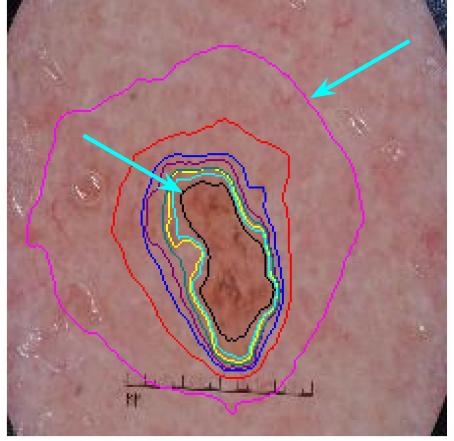

 $\mathcal{L}_1 = L_D(Y_{ik}, \hat{Y}_{i3}) + (0.05 * \hat{Y}_{i3}) + (0.75 * \hat{Y}_{i3}))$

 $\mathcal{L}_{total} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$

$\mathcal{L}_3 = L_{CE}(\begin{bmatrix} 0.20, \ 0.05, \ 0.75 \end{bmatrix}, \\ \begin{bmatrix} 0, & 0, & 1 \end{bmatrix})$

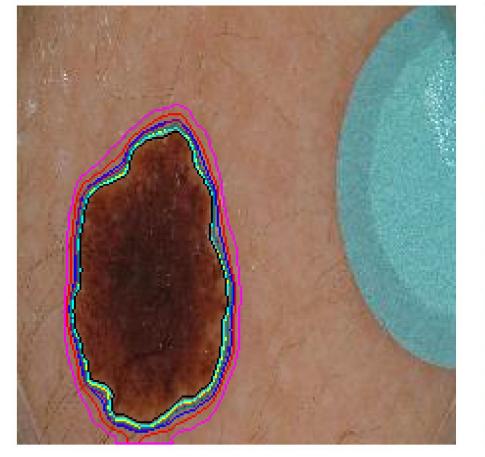
StyleSeg Outputs Adapt to Variability in Lesion Content

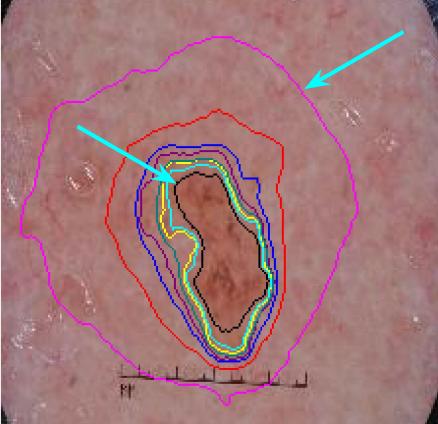
ISIC 0003599

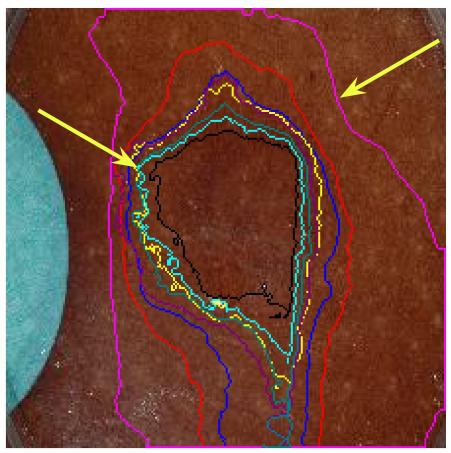

High-contrast lesion has high agreement across styles

StyleSeg Outputs Adapt to Variability in Lesion Content

ISIC 0003599


High-contrast lesion has high agreement across styles Instances of **under**and **over**segmentation

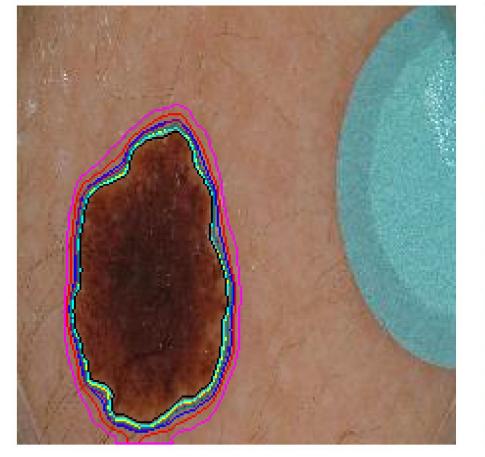

StyleSeg Outputs Adapt to Variability in Lesion Content

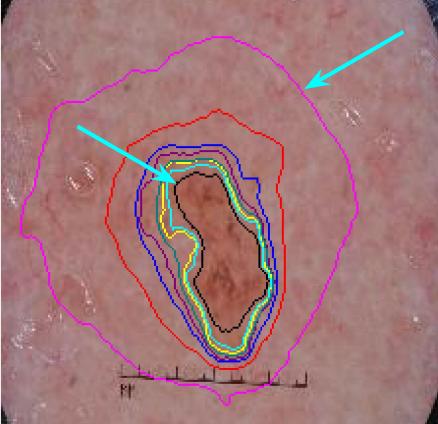

ISIC 0003599

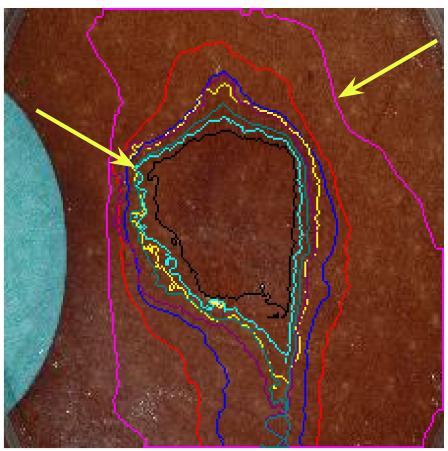
ISIC_0003726

High-contrast lesion has high agreement across styles

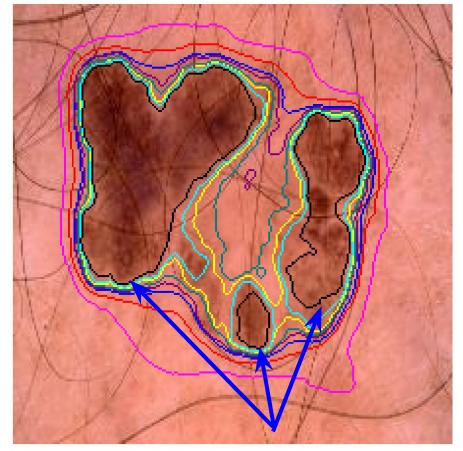
Instances of **under**and oversegmentation


Different **boundary** jaggedness across segmentations

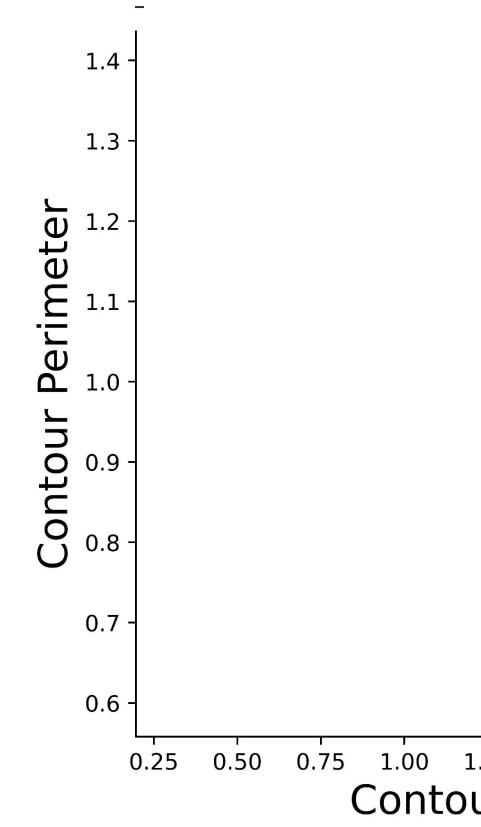

StyleSeg Outputs Adapt to Variability in Lesion Content


ISIC 0003599

ISIC_0003726

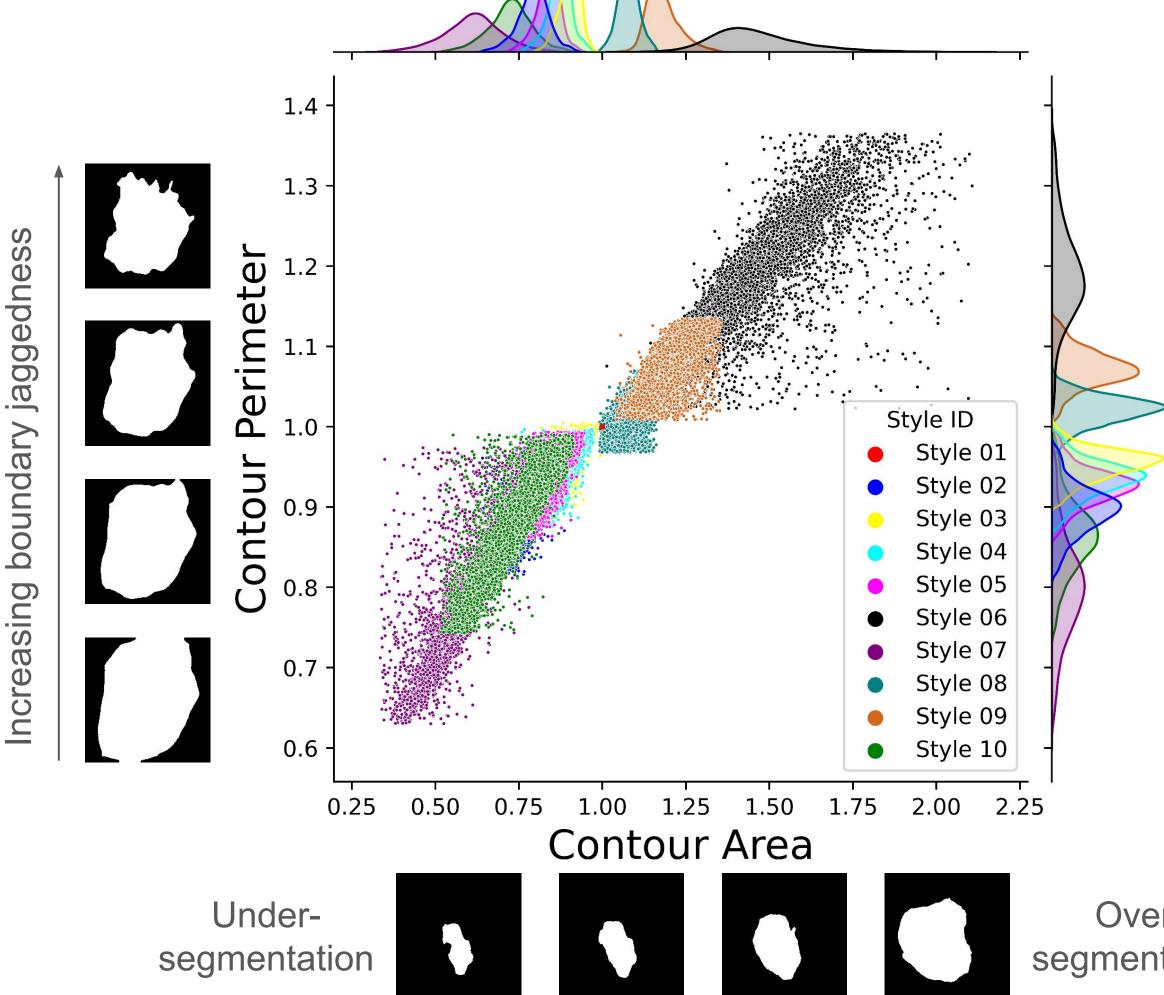


High-contrast lesion has high agreement across styles


Instances of underand oversegmentation

Different **boundary** jaggedness across segmentations

Ambiguous boundary causes segmentation masks to split



1.00 1.25 1.50 1.75 2.00 2.25 Contour Area

Oversegmentation

42

Oversegmentation

Competing Methods

	SSeg methods
NaiveTraining	SLS model without any annotator-specif
RandAnnotID ^[2]	4 SLS models, one optimized for <u>each a</u> mask.
LessIsMore ^[3]	SLS model <u>trained on a subset of the ma</u> Cohen's kappa \geq 0.5.
D-LEMA ^[2]	Ensemble of <u>Bayesian</u> SLS models.

fic knowledge.

annotator randomly assigned to a

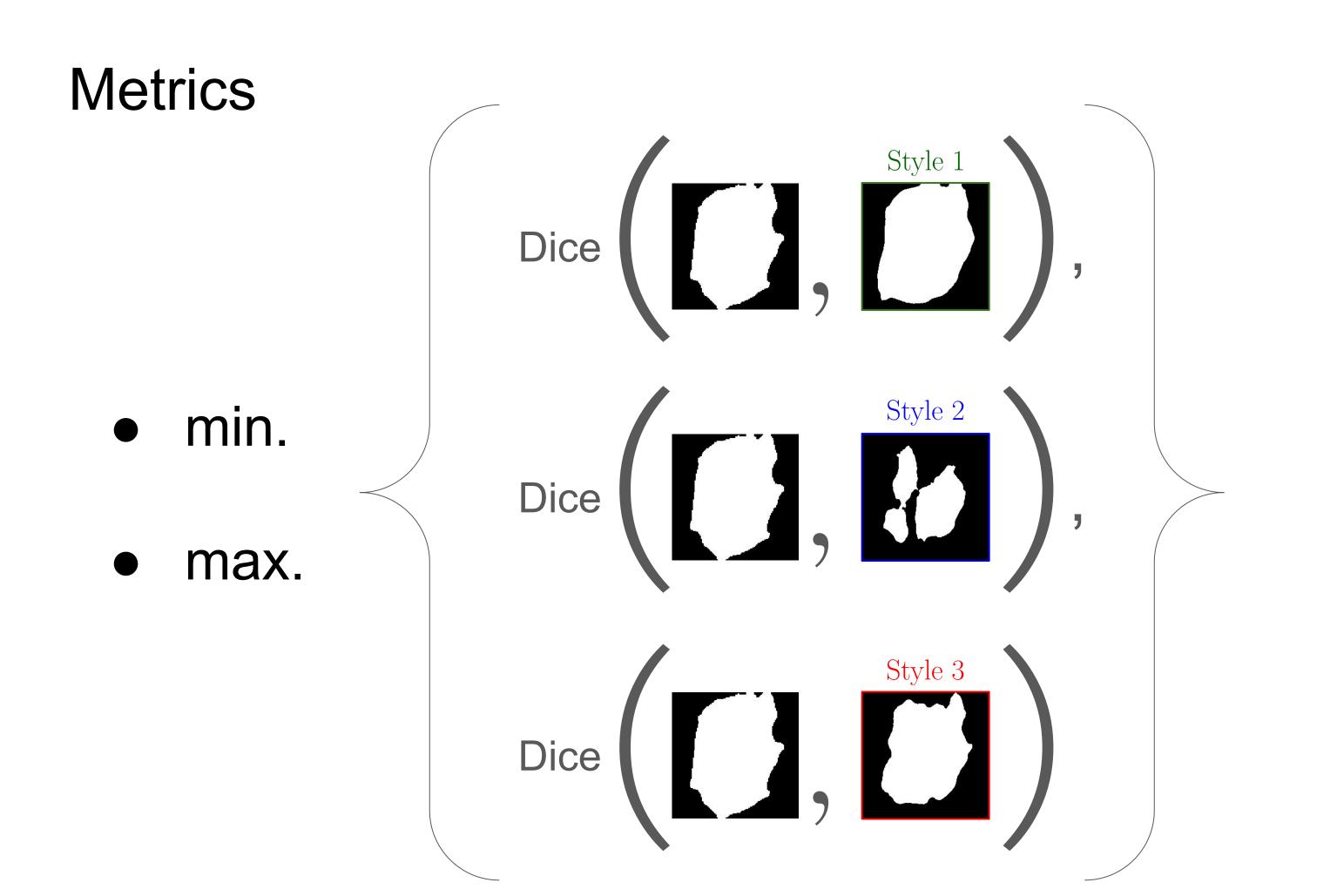
nasks whose average pairwise

Competing Methods

SSeg methods

NaiveTraining	SLS model without any annotator-specifi
RandAnnotID ^[2]	4 SLS models, one optimized for <u>each ar</u> mask.
LessIsMore ^[3]	SLS model <u>trained on a subset of the ma</u> Cohen's kappa \geq 0.5.
D-LEMA ^[2]	Ensemble of <u>Bayesian</u> SLS models.
	MSeg methods
MHP ^[4]	Multi-hypothesis prediction model, repur

fic knowledge.


annotator randomly assigned to a

nasks whose average pairwise

rposed for SLS.

Metrics

Quantitative Results

Method		ve-Test $(n = 10,000)$	DermoFit	
	Min. Dice	Max. Dice	Min. Dice	Max. Dice
NaiveTraining		0.800	0.8	842
RandAnnotID			0.8	526
LessIsMore		0.815	0.8	54
D-LEMA			0.8	53
2-MHP	0.727	0.864	0.707	0.882
2-StyleSeg	0.760	0.869	0.759	0.888
3-MHP	0.652	0.876	0.562	0.888
3-StyleSeg	0.713	0.881	0.720	0.897
4-MHP	0.623	0.886	0.636	0.904
4-StyleSeg	0.693	0.889	0.681	0.907
6-MHP	0.121	0.886	0.428	0.900
6-StyleSeg	0.648	0.889	0.651	0.911
8-MHP	0.099	0.896	0.309	0.908
8-StyleSeg	0.595	0.899	0.632	0.910
10-MHP	0.281	0.894	0.181	0.906
10-StyleSeg	0.603	0.899	0.579	0.918

Results on 4 datasets:

- **ISIC Archive-Test** (*n* = 10000)
- **DermoFit** (*n* = 1300)
- PH^2 (*n* = 200)
- SCD (*n* = 206)

Learning Multiple Styles Is Always Better

Method	ISIC Archi	ve-Test $(n = 10, 000)$	DermoFit $(n = 1, 300)$			
Wiethou	Min. Dice	Max. Dice	Min. Dice	Max. Dice		
NaiveTraining		0.800	0.842			
RandAnnotID		—	0.826			
LessIsMore		0.815	0.854			
D-LEMA		n—	0.853			
2-MHP	0.727	0.864	0.707	0.882		
2-StyleSeg	0.760	0.869	0.759	0.888		
3-MHP	0.652	0.876	0.562	0.888		
3-StyleSeg	0.713	0.881	0.720	0.897		
4-MHP	0.623	0.886	0.636	0.904		
4-StyleSeg	0.693	0.889	0.681	0.907		
6-MHP	0.121	0.886	0.428	0.900		
6-StyleSeg	0.648	0.889	0.651	0.911		
8-MHP	0.099	0.896	0.309	0.908		
8-StyleSeg	0.595	0.899	0.632	0.910		
10-MHP	0.281	0.894	0.181	0.906		
10-StyleSeg	0.603	0.899	0.579	0.918		

Learning to predict more than 1 style (MSeg methods), <u>even</u> <u>learning to predict 2 styles,</u> consistently outperforms SSeg methods.

Diversity Increases As More Styles are Learned

Method	ISIC Archiv	ve-Test $(n = 10, 000)$	DermoFit	(n = 1, 300)
	Min. Dice	Max. Dice	Min. Dice	Max. Dice
NaiveTraining		0.800	0.8	842
RandAnnotID		—	0.8	326
LessIsMore		0.815	0.8	854
D-LEMA			0.8	853
2-MHP	0.727	0.864	0.707	0.882
2-StyleSeg	0.760	0.869	0.759	0.888
3-MHP	0.652	0.876	0.562	0.888
3-StyleSeg	0.713	0.881	0.720	0.897
4-MHP	0.623	0.886	0.636	0.904
4-StyleSeg	0.693	0.889	0.681	0.907
6-MHP	0.121	0.886	0.428	0.900
6-StyleSeg	0.648	0.889	0.651	0.911
8-MHP	0.099	0.896	0.309	0.908
8-StyleSeg	0.595	0.899	0.632	0.910
10-MHP	0.281	0.894	0.181	0.906
10-StyleSeg	0.603	0.899	0.579	0.918

As *M* increases, <u>a larger</u> number of diverse segmentations are generated, and the max. Dice keeps improving.

StyleSeg Outperforms MHP

Method	ISIC Archiv	ve-Test $(n = 10, 000)$	DermoFit	(n = 1, 300)
Method	Min. Dice	Max. Dice	Min. Dice	Max. Dice
NaiveTraining		0.800	0.8	42
RandAnnotID			0.8	26
LessIsMore		0.815	0.8	54
D-LEMA		_	0.8	53
2-MHP	0.727	→ 0.864	0.707	→ 0.882
2-StyleSeg	0.760	0.869	0.759	0.888
3-MHP	0.652	0.876	0.562	0.888
3-StyleSeg	0.713	0.881	0.720	0.897
4-MHP	0.623	0.886	0.636	0.904
4-StyleSeg	0.693	0.889	0.681	0.907
6-MHP	0.121	0.886	0.428	0.900
6-StyleSeg	0.648	0.889	0.651	0.911
8-MHP	0.099	0.896	0.309	0.908
8-StyleSeg	0.595	0.899	0.632	0.910
10-MHP	0.281	0.894	0.181	0.906
10-StyleSeg	0.603	0.899	0.579	0.918

StyleSeg consistently outperforms MHP for all values of *M* and for all datasets.

StyleSeg Outputs Are More Plausible

Method	ISIC Archiv	ve-Test $(n = 10, 000)$	e-Test $(n = 10,000)$ _ DermoFit $(n = 1,300)$			
Method	Min. Dice	Max. Dice	Min. Dice	Max. Dice		
NaiveTraining		0.800	0.8	42		
RandAnnotID			0.8	26		
LessIsMore		0.815	0.8	54		
D-LEMA		_	0.8	53		
2-MHP	0.727	0.864	0.707	0.882		
2-StyleSeg	0.760	0.869	0.759	0.888		
3-MHP	0.652	0.876	0.562	0.888		
3-StyleSeg	0.713	0.881	0.720	0.897		
4-MHP	0.623	0.886	0.636	0.904		
4-StyleSeg	0.693	0.889	0.681	0.907		
6-MHP	0.121	0.886	0.428	0.900		
6-StyleSeg	0.648	0.889	0.651	0.911		
8-MHP	▶ 0.099	0.896	▶ 0.309	0.908		
8-StyleSeg	0.595	0.899	0.632	0.910		
10-MHP	→ 0.281	0.894	• 0.181	0.906		
10-StyleSeg	0.603	0.899	0.579	0.918		

<u>StyleSeg consistently</u> <u>outperforms MHP</u> for all values of *M* and for all datasets.

Moreover, as M increases, <u>all</u> <u>StyleSeg outputs remain</u> <u>reasonably plausible</u>, whereas MHP outputs exhibit diversity at the cost of plausibility.

Performance Improves Even on Single Annot. Datasets

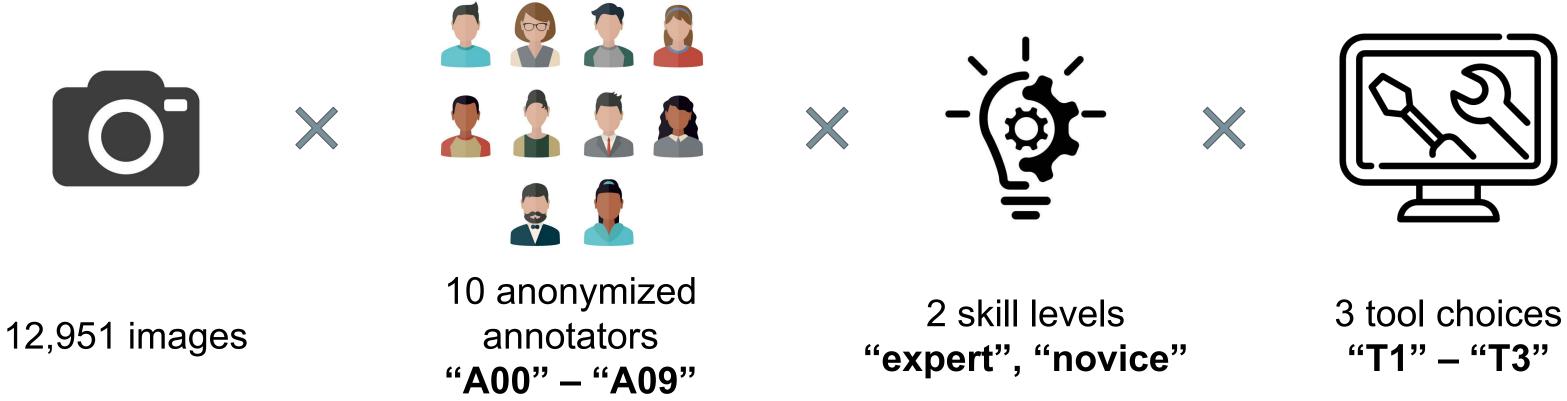
Method	ISIC Archiv	ve-Test $(n = 10, 000)$	DermoFit	(n = 1, 300)
Method	Min. Dice	Max. Dice	Min. Dice	Max. Dice
NaiveTraining		0.800	0.8	42
RandAnnotID			0.8	26
LessIsMore		0.815	0.8	54
D-LEMA		_	0.8	53
2-MHP	0.727	0.864	0.707	0.882
2-StyleSeg	0.760	0.869	0.759	0.888
3-MHP	0.652	0.876	0.562	0.888
3-StyleSeg	0.713	0.881	0.720	0.897
4-MHP	0.623	0.886	0.636	0.904
4-StyleSeg	0.693	0.889	0.681	0.907
6-MHP	0.121	0.886	0.428	0.900
6-StyleSeg	0.648	0.889	0.651	0.911
8-MHP	0.099	0.896	0.309	0.908
8-StyleSeg	0.595	0.899	0.632	0.910
10-MHP	0.281	0.894	0.181	0.906
10-StyleSeg	0.603	0.899	0.579	0.918

Even for datasets without documented variability in segmentations, learning to predict multiple styles is helpful.

Performance Improves Even on Single Annot. Datasets

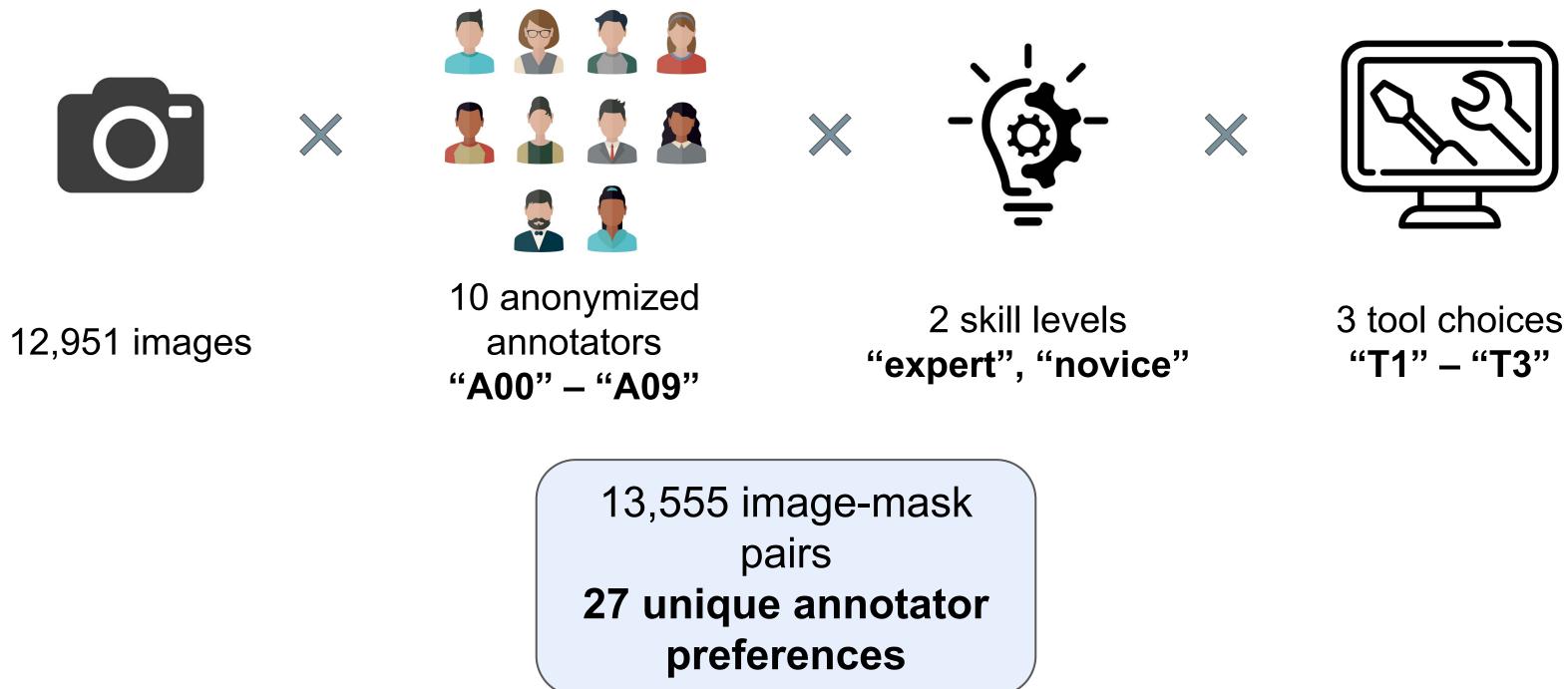
Method	ISIC Archiv	ve-Test $(n = 10, 000)$	DermoFit	(n = 1, 300)
Method	Min. Dice	Max. Dice	Min. Dice	Max. Dice
NaiveTraining		0.800	0.8	42
RandAnnotID			0.8	26
LessIsMore		0.815	0.8	54
D-LEMA			0.8	53
2-MHP	0.727	0.864	0.707	0.882
2-StyleSeg	0.760	0.869	0.759	0.888
3-MHP	0.652	0.876	0.562	0.888
3-StyleSeg	0.713	0.881	0.720	0.897
4-MHP	0.623	0.886	0.636	0.904
4-StyleSeg	0.693	0.889	0.681	0.907
6-MHP	0.121	0.886	0.428	0.900
6-StyleSeg	0.648	0.889	0.651	0.911
8-MHP	0.099	0.896	0.309	0.908
8-StyleSeg	0.595	0.899	0.632	0.910
10-MHP	0.281	0.894	0.181	0.906
10-StyleSeg	0.603	0.899	0.579	0.918

Even for datasets without documented variability in segmentations, learning to predict multiple styles is helpful.

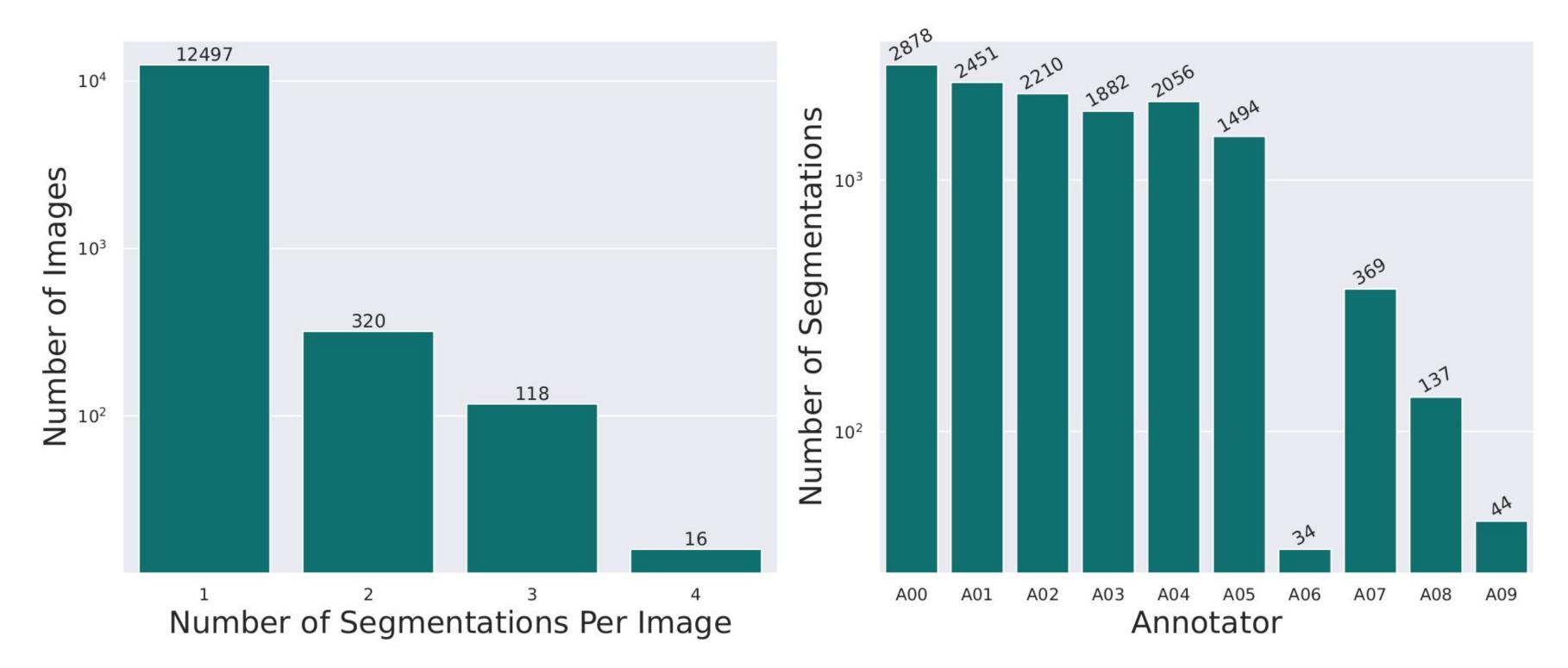


A New Multi-Annotator SLS Dataset: <u>ISIC-MultiAnnot</u>

The largest multi-annotator SLS dataset curated from the ISIC Archive.


A New Multi-Annotator SLS Dataset: <u>ISIC-MultiAnnot</u>

The **largest** multi-annotator SLS dataset curated from the ISIC Archive.



A New Multi-Annotator SLS Dataset: <u>ISIC-MultiAnnot</u>

The **largest** multi-annotator SLS dataset curated from the ISIC Archive.

A New Multi-Annotator SLS Dataset: ISIC-MultiAnnot

Quantitative Results on ISIC-MultiAnnot

$\operatorname{Annotator} + \operatorname{Tool}$	Seg.	1-StyleSeg	Seg 2-StyleSeg			9	3-StyleSeg		4-StyleSeg			
+ Experience	Count	Dice _{ISSS}	Dice _{ISSS}	Dice _{ASSS}	$\mathcal J$	Dice _{ISSS}	Dice _{ASSS}	$\mathcal J$	Dice _{ISSS}	Dice _{ASSS}	$\mathcal J$	
A00+T2+E	1573	0.8920.089	0.9230.061	0.9130.087	2	0.9440.049	0.9130.106	3	0.9440.044	0.9140.111	1	
A00+T2+N	1305	0.7160.302	0.7610.293	0.7280.308	2	0.7930.287	0.7270.313	3	0.7900.290	0.7260.304	3	
A01+T1+N	6	0.5590.362	0.7660.152	0.7660.152		0.7540.132	0.7410.125	${2}$	0.8190.106	0.7670.113	2	
A01+T3+E	297	0.9000.104	0.9150.093	0.8970.107	2	0.9270.075	0.9000.097	1	0.9310.067	0.9040.090	3	
A01+T3+N	2148	0.8290.185	0.8570.167	0.8170.170	1	0.8690.159	0.8360.178	1	0.8760.148	0.8360.175	3	
A02+T1+E	1742	0.8440.177	0.8800.140	0.8560.159	1	0.8860.132	0.8540.159	1	0.8950.112	0.8590.148	4	
A02+T3+E	468	0.8560.172	0.8890.167	0.8830.175	2	0.8990.161	0.8740.188	3	0.9030.146	0.8900.160	1	
A03+T1+E	1622	0.7780.168	0.8450.117	0.8270.137	1	0.8540.111	0.8240.145	2	0.8810.095	0.8230.132	4	
A03+T3+E	260	0.8910.116	0.9120.086	0.8760.173	2	0.9230.089	0.8680.150	1	0.9320.074	0.8740.163	3	
A04+T1+E	992	0.8500.158	0.8800.131	0.8600.149	1	0.8880.132	0.8660.153	$2^{$	0.9060.108	0.8560.157	4	
A04+T1+N	61	0.7600.242	0.8400.152	0.8230.164	1	0.8370.162	0.7860.201	1	0.8270.206	0.7890.226	4	
A04+T3+E	913	0.912 $_{o.oss}$	0.9390.054	0.9340.065	2	0.9480.047	0.9260.069	1	0.9510.045	0.9320.063	3	
A04+T3+N	90	0.8770.096	0.9100.068	0.9050.070	2	0.9280.031	0.9080.044	3	0.9260.052	0.9130.055	1	
A05+T1+E	752	0.8150.203	0.8620.163	0.8370.179	1	0.8730.162	0.8270.184	1	0.8820.147	0.8410.177	4	
A05+T3+E	742	0.8750.129	0.9030.109	0.8910.113	2	0.9160.098	0.8780.120	1	0.9190.091	0.8910.108	1	
$\overline{A06+T1+E}$	10	0.8240.187	0.9020.037	0.8850.070	1	0.9090.034	0.8890.049	2	0.9090.039	0.8800.063	4	
A06+T3+E	24	0.8620.079	0.9160.053	0.9160.053	2	0.9340.031	0.9230.031	3	0.9330.041	0.9290.040	1	
$\overline{A07+T1+E}$	67	0.8200.157	0.8770.124	0.8670.150	1	0.8900.108	0.8620.157	2	0.8970.104	0.8620.149	4	
A07+T1+N	251	0.8370.141	0.8920.085	0.8790.104	1	0.9030.067	0.8750.114	2	0.9050.070	0.8730.101	4	
A07+T3+E	12	0.925 $_{o.055}$	0.9380.019	0.9370.019	2	0.9390.020	0.9160.055	1	0.9470.016	0.9320.017	1	
A07+T3+N	39	0.8630.177	0.9180.061	0.9130.071	2	0.9330.037	0.8990.148	3	0.9340.039	0.9140.079	1	
A08+T1+E	26	0.6660.225	0.7500.161	0.6800.242	2	0.7470.197	0.6530.260	1	0.7930.134	0.6660.261	1	
A08+T3+E	111	0.6050.230	0.6680.197	0.6260.210	1	0.6770.206	0.6280.218	2	0.7350.166	0.6690.203	2	
A09+T1+E	30	0.8150.121	0.8410.098	0.7840.156	1	0.8730.089	0.8330.113	$\frac{1}{2}$	0.8840.076	0.8120.119	4	
A09+T1+N	1	0.9530.000	0.9270.000	0.9270.000	2	0.9550.000	0.9550.000	1	0.9470.000	0.9470.000	3	
A09+T3+E	10	0.9000.074	0.9180.054	0.9180.054	2	0.9330.038	0.9090.044	1	0.9370.043	0.9190.040	3	
A09+T3+N	3	0.8940.070	0.9110.058	$0.911_{o.oss}$	2	0.9570.015	0.9570.015	3	0.9440.030	0.9440.030	1	

Quantitative Results on ISIC-MultiAnnot

		Annota	tor + Tool	Seg.	1-StyleSeg	, 2	2-StyleSeg		3	-StyleSeg		4-5	StyleSeg	
		+ Ex	xperience	Count	Dice _{ISSS}	Dice _{ISSS}	Dice _{ASSS}	${\mathcal J}$	Dice _{ISSS}	Dice _{ASSS}	${\mathcal J}$	Dice _{ISSS}	DiceASSS	\mathcal{J}
		A00	+T2+E	1573	0.8920.089	0.9230.061	0.9130.087	2	0.9440.049	0.9130.106	3	0.9440.044	0.9140.111	1
		A00	+T2+N	1305	0.7160.302	0.7610.293	0.7280.308	2	0.7930.287	0.7270.313	3	0.7900.290	1 0.7260.304	3
Annotator		A01	+T1+N	6	0.5590.362	0.7660.152	0.7660.152	1	0.7540.132	0.7410.125	$\frac{2}{2}$	0.8190.106	0.7670.113	$\frac{2}{2}$
Amotator		A01	+T3+E	297	0.9000.104	0.915 $_{o.ogs}$	0.8970.107	2	0.9270.075	0.9000.097	1	0.9310.067	0.9040.090	3
		A01	+T3+N	2148	0.8290.185	0.8570.167	0.8170.170	1	0.8690.159	0.8360.178	1	0.8760.148	0.8360.175	3
	Skill	A02	+T1+E	1742	0.8440.177	0.8800.140	0.8560.159	1	0.8860.132	0.8540.159	1	0.8950.112	$0.859_{0.148}$	4
		A02	+T3+E	468	0.8560.172	0.8890.167	0.8830.175	2	0.8990.161	0.8740.188	3	0.9030.146	0.8900.160	1
	Level	A03	+T1+E	1622	0.7780.168	0.8450.117	0.8270.137	1	0.8540.111	0.8240.145	2	0.8810.095	0.8230.132	4
		A03	+T3+E	260	0.8910.116	0.9120.086	0.8760.173	2	0.9230.089	0.8680.150	1	0.9320.074	0.8740.163	3
A04 + T3 + N	90	A04	+T1+E	992	0.8500.158	0.8800.131	0.8600.149	1	0.8880.132	0.8660.153	2	0.9060.108	0.8560.157	4
	30	A04	+T1+N	61	0.7600.242	0.8400.152	0.8230.164	1	0.8370.162	0.7860.201	1	0.8270.206	0.7890.226	4
		A04	+T3+E	913	0.912 0.088	0.9390.054	0.9340.065	2	0.9480.047	0.9260.069	1	0.9510.045	0.9320.063	3
A05+T1+E	752	A04	+T3+N	90	0.8770.096	0.9100.068	1 0.9050.070	2	0.9280.031	0.9080.044	3	0.9260.052	0.9130.055	1
		A05	+T1+E	752	0.8150.203	0.8620.163	0.8370.179	1	0.8730.162	0.8270.184	1	0.8820.147	0.8410.177	4
A05 + T3 + E	742	A05	+T3+E	742	0.8750.129	0.9030.109	0.8910.113	2	0.9160.098	0.8780.120	1	0.9190.091	0.8910.108	1
		A06	+T1+E	10	0.8240.187	0.9020.037	0.8850.070	1	0.9090.034	0.8890.049	2	0.9090.039	0.8800.063	4
A06 + T1 + E	10	A06	+T3+E	24	0.8620.079	0.9160.053	<u> </u>	2	0.9340.031	0.9230.031	3	0.9330.041	0.9290.040	1
A00+11+L	10	A07	+T1+E	67	0.8200.157	0.8770.124	0.8670.150	1	0.8900.108	0.8620.157	2	0.8970.104	0.8620.149	4
		A07	+T1+N	251	0.8370.141	0.892 $_{o.oss}$	0.8790.104	1	0.9030.067	0.8750.114	2	0.9050.070	0.8730.101	4
		A07	+T3+E	12	0.925 0.055	0.9380.019	0.9370.019	2	0.9390.020	0.9160.055	1	0.9470.016	0.9320.017	1
		A07	+T3+N	39	0.8630.177	0.9180.061	<u> </u>	2	0.9330.037	0.8990.148	3	0.9340.039	0.9140.079	1
# image-mask		A08	+T1+E	26	0.6660.225	0.7500.161	0.6800.242	2	0.7470.197	0.6530.260	1	0.7930.134	0.6660.261	1
_		A08	+T3+E	111	0.6050.230	0.6680.197	0.6260.210	1	0.6770.206	0.6280.218	2	0.7350.166	0.6690.203	2
pairs		A09	+T1+E	30	0.8150.121	0.8410.098	0.7840.156	1	0.8730.089	0.8330.113	2	0.8840.076	0.8120.119	4
		A09	+T1+N	1	0.9530.000	0.9270.000	0.9270.000	2	0.9550.000	0.9550.000	1	0.9470.000	0.9470.000	3
		A09	+T3+E	10	0.9000.074	$0.918_{o.054}$	0.9180.054	2	0.9330.038	0.9090.044	1	0.9370.043	0.9190.040	3
		A09	+T3+N	3	0.8940.070	0.9110.058	0.9110.058	2	0.9570.015	0.9570.015	3	0.9440.030	0.9440.030	1

Quantitative Results on ISIC-MultiAnnot

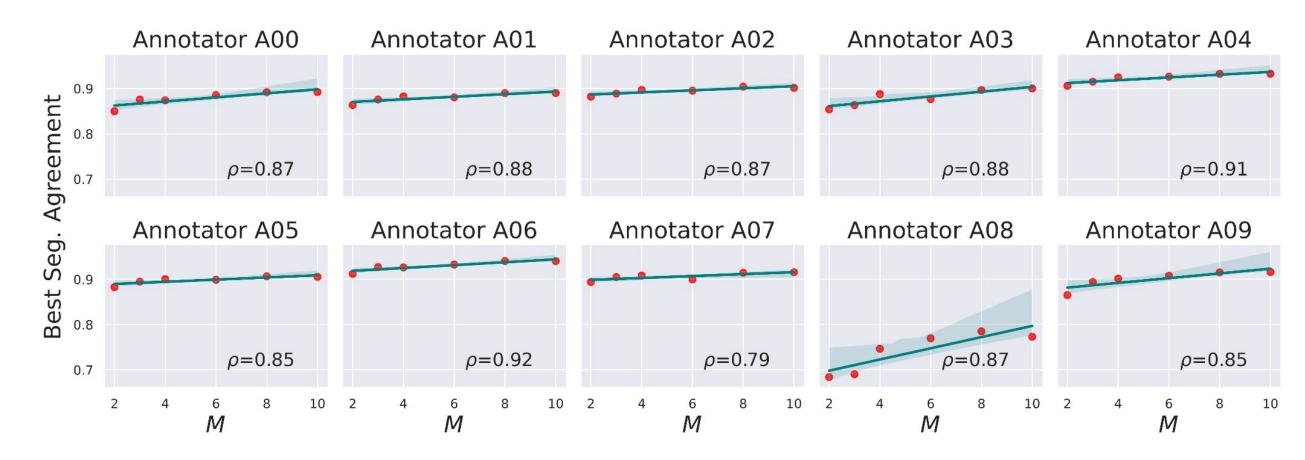
		$\begin{array}{c} + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	nnotator + Tool	Seg.	1-StyleSeg	2	2-StyleSeg		3	-StyleSeg		4-\$	StyleSeg	
			+ Experience	Count	Dice _{ISSS}	$\operatorname{Dice}_{\mathrm{ISSS}}$	$\operatorname{Dice}_{\operatorname{ASSS}}$	${\mathcal J}$	Dice _{ISSS}	Dice _{ASSS}	${\mathcal J}$	$\operatorname{Dice}_{\mathrm{ISSS}}$	DiceASSS	${\mathcal J}$
			A00+T2+E	1573	0.8920.089	0.9230.061	0.913 <i>0.087</i>	2	0.9440.049	0.9130.106	3	0.9440.044	0.9140.111	1
			A00+T2+N	1305	0.7160.302	0.7610.293	0.7280.308	2	0.7930.287	0.7270.313	3	0.7900.290	0.7260.304	3
Annotator			A01+T1+N	6	0.5590.362	0.7660.152	0.7660.152	1	0.7540.132	0.7410.125	2	0.8190.106	0.7670.113	2
			A01+T3+E	297	0.9000.104	0.9150.093	0.8970.107	2	0.9270.075	0.9000.097	1	0.9310.067	0.9040.090	3
			A01+T3+N	2148	0.8290.185	0.8570.167	0.8170.170	1	0.8690.159	0.8360.178	1	0.8760.148	0.8360.175	3
	Skill		$\overline{A02}+\overline{T1}+\overline{E}$	1742	0.8440.177	0.8800.140	0.8560.159	1	0.8860.132	0.8540.159	1	0.8950.112	0.8590.148	4
Lev			A02+T3+E	468	0.8560.172	0.8890.167	0.8830.175	2	0.8990.161	0.8740.188	3	0.9030.146	0.8900.160	1
	Level		A03+T1+E	1622	0.7780.168	0.8450.117	0.8270.137	1	0.8540.111	0.8240.145	2	0.8810.095	0.8230.132	4
		N	A03+T3+E	260	0.8910.116	0.9120.086	0.8760.173	2	0.9230.089	0.8680.150	1	0.9320.074	0.8740.163	3
$\Delta 0/1 \pm T_3 \pm N_1$	90		A04+T1+E	992	0.8500.158	0.8800.131	0.8600.149	1	0.8880.132	0.8660.153	2	0.9060.108	0.8560.157	4
$A04 \pm 10 \pm 10$	30		A04+T1+N	61	0.7600.242	0.8400.152	0.8230.164	1	0.8370.162	0.7860.201	1	0.8270.206	0.7890.226	4
			A04+T3+E	913	0.912 $_{o.088}$	$0.939_{\it 0.054}$	0.9340.065	2	0.9480.047	0.9260.069	1	0.9510.045	0.9320.063	3
A05+T1+E	752		A04+T3+N	90	0.8770.096	0.9100.068	0.9050.070	2	0.9280.031	0.9080.044	3	0.9260.052	0.9130.055	1
			A05+T1+E	752	0.8150.203	0.8620.163	0.8370.179	1	0.8730.162	0.8270.184	1	0.8820.147	0.8410.177	4
A05 + T3 + E	742		A05+T3+E	742	0.8750.129	0.9030.109	0.8910.113	2	0.9160.098	0.8780.120	1	0.9190.091	0.8910.108	1
			A06+T1+E	10	0.8240.187	0.9020.037	0.8850.070	1	0.9090.034	0.8890.049	2	0.909 <i>0.039</i>	0.8800.063	4
A06+T1+E	10		A06+T3+E	24	0.8620.079	0.9160.053	0.9160.053	2	0.9340.031	0.9230.031	3	0.9330.041	0.9290.040	1
A00+11+E	10		A07+T1+E	67	0.8200.157	0.8770.124	0.8670.150	1	0.8900.108	0.8620.157	2	0.8970.104	0.8620.149	4
			A07+T1+N	251	0.8370.141	0.892 $_{o.085}$	0.8790.104	1	0.9030.067	0.8750.114	2	0.9050.070	0.8730.101	4
	-		A07+T3+E	12	0.925 $_{o.055}$	0.9380.019	0.9370.019	2	0.9390.020	0.9160.055	1	0.9470.016	0.9320.017	1
			_A07+T3+N	39	0.8630.177	0.9180.061	0.9130.071	2	0.9330.037	0.8990.148	3	0.9340.039	0.9140.079	1
# image-mask			A08+T1+E	26	0.6660.225	0.7500.161	0.6800.242	2	0.7470.197	0.6530.260	1	0.7930.134	0.6660.261	1
			E	111	0.6050.230	0.6680.197	0.6260.210	1	0.6770.206	0.6280.218	2	0.7350.166	0.6690.203	2
pairs			A09+T1+E	30	0.8150.121	0.8410.098	0.7840.156	1	0.8730.089	0.8330.113	2	0.8840.076	0.8120.119	4
•			A09+T1+N	1	0.9530.000	0.9270.000	0.9270.000	2	0.9550.000	0.9550.000	1	0.9470.000	0.9470.000	3
	, ,		A09+T3+E	10	0.9000.074	0.9180.054	0.9180.054	2	0.9330.038	0.9090.044	1	0.9370.043	0.9190.040	3
		_	A09+T3+N	3	0.8940.070	0.9110.058	l 0.911 <i>0.058</i>	2	0.9570.015	0.9570.015	3	0.9440.030	0.9440.030	1

4-StyleSeg

Improved diversity without compromising quality: for all $M \ge 2$, choosing 1. a single style that, for each annotator preference, maximizes agreement with the "ground truth" still outperforms 1-StyleSeg.

Annotator + Tool	Seg.	1-StyleSeg	2	-StyleSeg		2	L-StyleSeg		4-5	styleSeg	
+ Experience	Count	Diceisss	Dice _{ISSS}	DiceAsss	I	Dice _{ISSS}	Diceasss	I	Dice _{ISSS}	DiceASSS	÷.
A00+T2+E	1573	0.892s.ass	0.9230.062	0.9130.087	2	0.9440.049	0.9130.208	3	0.9440.044	0.9146.111	
A00+T2+N	1305	0.7160.302	0.7610.297	$0.728_{o.sos}$	2	0.7930.257	0.7270.212	3	0.7900.250	0.7260.004	;
A01+T1+N	6	0.5590.342	0.7660.150	0.7660.250	1	0.7540.139	0.7410.105	2	0.8190.100	0.7670.118	
A01+T3+E	297	0.9000.104	0.9150.000	0.8970.207	2	0.9270.075	0.9000.007	1	0.9310.057	0.9040.000	
A01+T3+N	2148	0.8290.185	0.8570.107	0.8170.170	1	0.8690.159	0.8360.178	1	0.8760.148	0.8360.175	
A02+T1+E	1742	0.8440.177	0.8800.140	0.8560.259	1	0.8860.132	0.8540.159	1	0.8950.120	0.8590.148	
A02+T3+E	468	0.8560.172	0.8890.207	0.8830.175	2	0.8990.101	0.8740.188	3	0.9030.140	0.8900.160	
A03+T1+E	1622	0.7780.100	0.8450.117	0.8270.127	1	0.8540.111	0.8240.145	2	0.8810.005	0.8230.152	
A03+T3+E	260	0.8910.110	0.912o.ese	0.8760.275	2	0.9230.089	0.8680.159	1	0.9320.074	0.8740.103	
A04+T1+E	992	0.8500.138	0.8800.131	0.8600.249	1	0.8880.138	0.8660.259	2	0.9060.108	0.8560.157	
A04+T1+N	61	0.7600.242	0.8400.152	0.8230.104	1	0.8370.142	0.7860.001	1	0.8270.000	0.7890.220	
A04+T3+E	913	0.912 <i>a</i> .ass	0.9390.054	0.934 <i>0.005</i>	2	0.9480.047	0.9260.009	1	0.9510.045	0.9320.062	
A04+T3+N	90	0.8770.095	0.9100.000	0.9050.070	2	0.9280.031	0.9080.044	3	0.9260.030	0.9130.055	
A05+T1+E	752	0.8150.003	0.8620.105	0.8370.179	1	0.8730.100	0.8270.184	1	0.8820.147	0.8410.177	
A05+T3+E	742	0.8750.129	0.9030.109	0.8910.113	2	0.9160.038	0.8780.120	1	0.9190.091	0.8910.108	
A06+T1+E	10	0.8240.187	0.9020.007	0.8850.070	1	0.9090.034	0.8890.049	2	0.9090.039	0.8800.052	
A06+T3+E	24	0.8620.079	0.9160.089	0.9160.005	2	0.9340.001	0.9230.002	3	0.9330.041	0.9290.040	
A07+T1+E	67	0.8200.137	0.8770.184	0.8670.250	1	0.8900.108	0.8620.157	2	0.8970.104	0.8620.149	
A07+T1+N	251	0.8370.141	0.8920.085	0.8790.104	1	0.9030.057	0.8750.114	2	0.9050.070	0.8730.101	
A07+T3+E	12	0.9250.035	0.9380.019	0.9370.019	2	0.9390.040	0.9160.055	1	0.947a.ore	0.9320.017	
A07+T3+N	39	0.8630.177	0.9180.001	0.9130.071	2	0.9330.037	0.8990.148	3	0.9340.039	0.9140.079	
A08+T1+E	26	0.6660.205	0.7500.101	0.6800.242	2	0.7470.197	0.6530.209	1	0.7930.134	0.6660.001	
A08+T3+E	111	0.6050.250	0.6680.197	0.6260.210	1	0.6770.200	0.6280.218	2	0.7350.166	0.6690.202	
A09+T1+E	30	0.8150.101	0.8410.000	0.7840.150	1	0.8730.059	0.8330.119	2	0.8840.076	0.8120.119	
A09+T1+N	1	0.9530.000	0.9270.000	0.9270.000	2	0.9550.000	0.9550.000	1	0.9470.000	0.9470.000	
A09+T3+E	10	0.9000.074	0.9180.054	0.9180.054	2	0.9330.035	0.9090.044	1	0.9370.040	0.9190.040	
A09+T3+N	3	0.8940.000	0.9110.058	0.9110.058	2	0.9570.015	0.9570.015	3	0.944a.aso	0.944a.eso	

Improved diversity without compromising quality: for all $M \ge 2$, choosing 1. a single style that, for each annotator preference, maximizes agreement with the "ground truth" still outperforms 1-StyleSeg.


Personalization in segmentation: each user can choose their own style.

Annotator + Tool	Seg.	1-StyleSeg	2	-StyleSeg		3	-StyleSeg		4-5	styleSeg	
+ Experience	Count	Diceisss	Dice _{ISSS}	DiceAsss	I	Dice _{ISSS}	DiceAsss	I	Dice ₁₈₈₈	DiceASSS	
A00+T2+E	1573	0.892s.ass	0.9230.062	0.9130.087	2	0.9440.049	0.9130.208	3	0.9440.044	0.9140.171	
A00+T2+N	1305	0.7160.302	0.7610.297	$0.728_{o.sos}$	2	0.7930.257	0.7270.212	3	0.7900.250	$0.726_{\sigma.204}$	
A01+T1+N	6	0.5590.342	0.7660.150	0.7660.250	1	0.7540.139	0.7410.105	2	0.8190.100	0.7670.118	
A01+T3+E	297	0.9000.104	0.9150.000	0.8970.107	2	0.9270.075	0.9000.007	1	0.9310.057	0.9040.000	
A01+T3+N	2148	0.8290.185	0.8570.107	0.8170.170	1	0.8690.159	0.8360.178	1	0.8760.148	0.8360.175	
A02+T1+E	1742	0.8440.177	0.8800.140	0.8560.259	1	0.8860.132	0.8540.159	1	0.8950.120	0.8590.148	
A02+T3+E	468	0.8560.172	0.8890.207	0.8830.225	2	0.8990.101	0.8740.188	3	0.9030.140	0.8900.160	
A03+T1+E	1622	0.7780.100	0.8450.117	0.8270.127	1	0.8540.111	0.8240.145	2	0.8810.005	0.8230.132	
A03+T3+E	260	0.8910.110	0.912o.ese	0.8760.275	2	0.9230.089	0.8680.150	1	0.9320.074	0.8740.103	
A04+T1+E	992	0.8500.138	0.8800.131	0.8600.249	1	0.8880.138	0.8660.289	2	0.906a.1as	0.8560.157	
A04+T1+N	61	0.7600.242	0.8400.152	0.8230.104	1	0.8370.162	0.7860.201	1	0.8270.200	0.7890.220	
A04+T3+E	913	0.912 <i>a</i> .ass	0.9390.054	0.9340.005	2	0.9480.047	0.9260.000	1	0.9510.045	0.9320.062	
A04+T3+N	90	0.8770.095	0.9100.000	0.9050.070	2	0.9280.001	0.9080.044	3	0.9260.032	0.9130.035	
A05+T1+E	752	0.8150.003	0.8620.105	0.8370.179	1	0.8730.100	0.8270.184	1	0.8820.147	0.8410.177	
A05+T3+E	742	0.8750.129	0.9030.109	0.8910.215	2	0.9160.038	0.8780.120	1	0.9190.091	0.8910.108	
A06+T1+E	10	0.8240.187	0.9020.007	0.8850.070	1	0.9090.034	0.8890.049	2	0.9090.059	0.8800.052	
A06+T3+E	24	0.8620.079	0.9160.089	0.9160.059	2	0.9340.001	0.9230.002	3	0.9330.041	0.9290.040	
A07+T1+E	67	0.8200.137	0.8770.184	0.8670.150	1	0.8900.108	0.8620.157	2	0.8970.104	0.8620.149	
A07+T1+N	251	0.8370.141	0.8920.085	0.8790.104	1	0.9030.057	0.8754.114	2	0.9050.070	0.8730.101	
A07+T3+E	12	0.9250.035	0.9380.019	0.9370.019	2	0.9390.000	0.9160.055	1	0.947a.oze	0.9320.017	
A07+T3+N	39	0.8630.177	0.9180.001	0.9130.071	2	0.9330.017	0.8990.148	3	0.9340.059	0.9140.079	
A08+T1+E	26	0.6669.205	0.7500.101	0.6800.242	2	0.7470.107	0.6530.000	1	0.7930.184	0.6660.001	
A08+T3+E	111	0.6050.250	0.6680.197	0.6260.210	1	0.6770.200	0.6280.218	2	0.7350.160	0.6690.202	
A09+T1+E	30	0.8150.101	0.8410.000	0.7840.150	1	0.8730.059	0.8330.119	2	0.8840.076	0.8120.119	
A09+T1+N	1	0.953	0.9270.000	0.9270.000	2	0.9550.000	0.9550.000	1	0.9470.000	0.9470.000	
A09+T3+E	10	0.9000.074	0.9180.054	0.9180.054	2	0.9330.035	0.9090.044	1	0.9370.040	0.9190.040	
A09+T3+N	3	0.8940.000	0.9110.058	0.9110.058	2	0.9570.015	0.957a.ors	3	0.944a.000	0.944a.ese	

- **Improved diversity without compromising quality**: for all $M \ge 2$, choosing 1. a single style that, for each annotator preference, maximizes agreement with the "ground truth" still outperforms 1-StyleSeg.
- 2. **Performance improves as** *M* **increases.**

Annotator + Tool	Seg.	1-StyleSeg	2	-StyleSeg		2	L-StyleSeg		4-StyleSeg		
+ Experience	Count	Diceisss	Dice _{ISSS}	DiceAsss	I	Dice _{ISSS}	Diceasss	\mathcal{J}	Dice _{ISSS}	DiceASSS	ŝ
A00+T2+E	1573	0.892.ass	0.9230.062	0.9130.087	2	0.9440.049	0.9130.208	3	0.9440.044	0.9140.111	
A00+T2+N	1305	0.7160.302	0.7610.292	0.7280.505	2	0.7930.257	0.7270.212	3	0.7900.250	0.7260.204	
A01+T1+N	6	0.5590.362	0.7660.150	0.7660.250	1	0.7540.130	0.7410.105	2	0.8190.100	0.7670.115	
A01+T3+E	297	0.9000.104	0.9150.000	0.8970.107	2	0.9270.075	0.9000.007	1	0.9310.057	0.9040.000	
A01+T3+N	2148	0.8290.185	0.8570.107	0.8170.170	1	0.8690.159	0.8360.178	1	0.8760.148	0.8360.175	
A02+T1+E	1742	0.8440.177	0.8800.140	0.8560.259	1	0.8860.132	0.8540.159	1	0.8950.120	0.8590.148	
A02+T3+E	468	0.8560.178	0.8890.207	0.8830.225	2	0.8990.101	0.8740.188	3	0.9030.140	0.8900.160	
A03+T1+E	1622	0.7780.100	0.8450.117	0.8270.127	1	0.8540.111	0.8240.145	2	0.8810.005	0.8230.152	
A03+T3+E	260	0.8910.110	0.912o.ese	0.8760.275	2	0.9230.089	0.8680.159	1	0.9320.074	$0.874_{\sigma.163}$	
A04+T1+E	992	0.8500.158	0.8800.131	0.8600.249	1	0.8880.138	0.8660.255	2	0.9060.108	0.8560.137	
A04+T1+N	61	0.760	0.8400.150	0.8230.104	1	0.8370.162	0.7860.001	1	0.8270.000	0.7890.226	
A04+T3+E	913	0.912s.ass	0.9390.054	0.9340.005	2	0.9480.047	0.9260.009	1	0.9510.045	0.9320.052	
A04+T3+N	90	0.8770.095	0.9100.000	0.9050.070	2	0.9280.031	0.9080.044	3	0.9260.032	0.9130.035	
A05+T1+E	752	0.8150.000	0.8620.167	0.8370.179	1	0.8730.100	0.8270.184	1	0.8820.147	0.8410.177	
A05+T3+E	742	0.8750.189	0.9030.109	0.8910.215	2	0.9160.038	0.8780.140	1	0.9190.091	0.8910.108	
A06+T1+E	10	0.8240.187	0.9020.037	0.8850.070	1	0.9090.034	0.8890.049	2	0.9090.039	0.8800.052	
A06+T3+E	24	0.8620.019	0.9160.059	0.9160.005	2	0.9340.001	0.9230.032	3	0.9330.041	0.9290.040	
A07+T1+E	67	0.8200.137	0.8770.184	0.8670.150	1	0.8900.108	0.8620.157	2	0.8970.104	0.8620.149	
A07+T1+N	251	0.8370.141	0.8920.085	0.8790.104	1	0.9030.057	0.8750.414	2	0.9050.070	0.8730.101	
A07 + T3 + E	12	0.925	0.9380.019	0.9370.019	2	0.9390.040	0.9160.035	1	0.9470.010	0.9320.017	
A07+T3+N	39	0.8630.177	0.9180.001	0.9130.071	2	0.9330.037	0.8990.14#	3	0.9340.039	0.9140.079	
A08+T1+E	26	0.6669.205	0.7500.101	0.6800.242	2	0.7470.197	0.6530.000	1	0.7930.184	0.6660.001	
A08+T3+E	111	0.6050.200	0.6680.197	0.6260.210	1	0.6770.200	0.6280.218	2	0.7350.166	0.6690.202	
A09+T1+E	30	0.8150.191	0.8410.005	0.7840.150	1	0.8730.009	0.8330.119	2	0.8840.076	0.8120.119	
A09+T1+N	1	0.9530.000	0.9270.000	0.9270.000	2	0.9550.000	0.9550.000	1	0.9470.000	0.9470.000	
A09+T3+E	10	0.9000.074	0.9180.054	0.9180.054	2	0.9330.035	0.9090.044	1	0.9370.040	0.9190.040	;
A09+T3+N	3	0.8940.070	0.9110.058	0.9110.058	2	0.9570.015	0.9570.015	3	0.944a.aso	0.944a.ese	- 3

- **Improved diversity without compromising quality**: for all $M \ge 2$, choosing 1. a single style that, for each annotator preference, maximizes agreement with the "ground truth" still outperforms 1-StyleSeg.
- 2. **Performance improves as** *M* **increases.**

Annotator + Tool	Seg.	1-StyleSeg	2	-StyleSeg		3	-StyleSeg		4-StyleSeg			
+ Experience	Count	Dicersss	Dice ₁₈₈₈	Diceasss	J	Dice _{ISSS}	Diceases	I	Dice ₁₈₈₈	DiceASSS	3	
A00+T2+E	1573	0.892p.asp	0.9230.062	0.9130.087	2	0.9440.049	0.9130.208	3	0.9440.044	0.9140.111	j,	
A00+T2+N	1305	0.7160.302	0.7610.292	0.7280.505	2	0.7930.257	0.7270.313	3	0.7900.250	$0.726_{o.204}$;	
A01+T1+N	6	0.5590.362	0.7660.150	0.7660.250	1	0.7540.150	0.7410.285	2	0.8190.100	0.7670.113		
A01+T3+E	297	0.9000.104	0.9150.000	0.8970.107	2	0.9270.075	0.9000.007	1	0.9310.057	0.9040.000	3	
A01+T3+N	2148	0.8290.185	0.8570.107	0.8170.170	1	0.8690.159	0.8360.178	1	0.8760.148	0.8360.175	- 3	
A02+T1+E	1742	0.8440.177	0.8800.140	0.8560.259	1	0.8860.152	0.8540.159	1	0.8950.120	0.8590.148		
A02+T3+E	468	0.8560.172	0.8890.207	0.8830.225	2	0.8990.161	0.8740.288	3	0.9030.140	0.8900.160		
A03+T1+E	1622	0.7780.108	0.8450.117	0.8270.127	1	0.8540.111	0.8240.145	2	0.8810.005	0.8230.152		
A03+T3+E	260	0.8910.110	0.912o.ese	0.8760.275	2	0.9230.089	0.8680.250	1	0.9320.074	0.8740.103	;	
A04+T1+E	992	0.8500.138	0.8800.131	0.8600.249	1	0.8880.138	0.8660.289	2	0.9060.108	0.8560.137		
A04+T1+N	61	0.760	0.8400.152	0.8230.104	1	0.8370.162	0.7860.201	1	0.8270.000	0.7890.226		
A04+T3+E	913	0.912s.ass	0.9390.054	0.9340.005	2	0.9480.047	0.9260.069	1	0.9510.045	0.9320.052	-	
A04+T3+N	90	0.8770.096	0.9100.000	0.9050.070	2	0.9280.031	0.9080.044	3	0.9260.030	0.9130.035		
A05+T1+E	752	0.8150.003	0.8620.105	0.8370.179	1	0.8730.100	0.8270.284	1	0.8820.147	0.8410.177		
A05+T3+E	742	0.8750.129	0.9030.109	0.8910.213	2	0.9160.038	0.8780.140	1	0.9190.091	0.891.0.108		
A06+T1+E	10	0.8240.187	0.9020.007	0.8850.070	1	0.9090.034	0.8890.049	2	0.9090.039	0.8800.052	17	
A06+T3+E	24	0.8620.079	0.9160.089	0.9160.059	2	0.9340.001	0.9230.032	3	0.9330.041	0.9290.040	- 3	
A07+T1+E	67	0.8200.157	0.8770.184	0.8670.150	1	0.8900.108	0.8620.157	2	0.8970.104	0.8620.149		
A07+T1+N	251	0.8370.141	0.8920.085	0.8790.104	1	0.9030.057	0.8750.114	2	0.9050.070	0.8730.101	- 3	
A07+T3+E	12	0.925 c.ass	0.9380.019	0.9370.019	2	0.9390.000	0.9160.055	1	0.9470.020	0.9320.017		
A07+T3+N	39	0.8630.177	0.9180.001	0.9130.071	2	0.9330.037	0.8990.14#	3	0.9340.039	0.9140.079		
A08+T1+E	26	0.6660.205	0.7500.101	0.6800.242	2	0.7470.197	0.6530.000	1	0.7930.134	0.6660.201		
A08+T3+E	111	0.6050.200	0.6680.197	0.6260.210	1	0.6770.200	0.6280.218	2	0.7350.166	0.6690.202		
A09+T1+E	30	0.8150.101	0.8410.000	0.7840.150	1	0.8730.059	0.8330.119	2	0.8840.076	0.8120.119		
A09+T1+N	1	0.9530.000	0.9270.000	0.9270.000	2	0.9550.000	0.9550.000	1	0.9470.000	0.9470.000	;	
A09+T3+E	10	0.9000.074	0.9180.054	0.9180.054	2	0.9330.035	0.9090.044	1	0.9370.040	0.9190.040	;	
A09+T3+N	3	0.8940.070	0.9110.058	0.9110.058	2	0.957a.ors	0.9570.015	3	0.944a.050	0.944a.ese	- 1	

- **Improved diversity without compromising quality**: for all $M \ge 2$, choosing 1. a single style that, for each annotator preference, maximizes agreement with the "ground truth" still outperforms 1-StyleSeg.
- 2. Performance improves as *M* increases.
- **Ability to learn tool-specific latent factors:** Without specifically training for 3. it, a 3-StyleSeg model is able to choose a unique style for each of the three tools ("T1", "T2", "T3").

Annotator + Tool	Seg.	1-StyleSeg	2	-StyleSeg		2	L-StyleSeg		4-StyleSeg		
+ Experience	Count	Diceisss	Dice _{ISSS}	DiceAsss	I	Dice _{ISSS}	Diceasss	\mathcal{J}	Dice _{ISSS}	DiceASSS	ŝ
A00+T2+E	1573	0.892.ass	0.9230.062	0.9130.087	2	0.9440.049	0.9130.208	3	0.9440.044	0.9140.111	
A00+T2+N	1305	0.7160.302	0.7610.292	0.7280.505	2	0.7930.257	0.7270.212	3	0.7900.250	0.7260.204	
A01+T1+N	6	0.5590.362	0.7660.150	0.7660.250	1	0.7540.130	0.7410.105	2	0.8190.100	0.7670.115	
A01+T3+E	297	0.9000.104	0.9150.000	0.8970.107	2	0.9270.075	0.9000.007	1	0.9310.057	0.9040.000	
A01+T3+N	2148	0.8290.185	0.8570.107	0.8170.170	1	0.8690.159	0.8360.178	1	0.8760.148	0.8360.175	
A02+T1+E	1742	0.8440.177	0.8800.140	0.8560.259	1	0.8860.132	0.8540.159	1	0.8950.120	0.8590.148	
A02+T3+E	468	0.8560.178	0.8890.207	0.8830.225	2	0.8990.101	0.8740.188	3	0.9030.140	0.8900.160	
A03+T1+E	1622	0.7780.100	0.8450.117	0.8270.127	1	0.8540.111	0.8240.145	2	0.8810.005	0.8230.152	
A03+T3+E	260	0.8910.110	0.912o.ese	0.8760.275	2	0.9230.089	0.8680.159	1	0.9320.074	$0.874_{\sigma.163}$	
A04+T1+E	992	0.8500.158	0.8800.131	0.8600.249	1	0.8880.138	0.8660.255	2	0.9060.108	0.8560.137	
A04+T1+N	61	0.760	0.8400.150	0.8230.104	1	0.8370.162	0.7860.001	1	0.8270.000	0.7890.226	
A04+T3+E	913	0.912s.ass	0.9390.054	0.9340.005	2	0.9480.047	0.9260.009	1	0.9510.045	0.9320.052	
A04+T3+N	90	0.8770.095	0.9100.000	0.9050.070	2	0.9280.031	0.9080.044	3	0.9260.032	0.9130.035	
A05+T1+E	752	0.8150.000	0.8620.167	0.8370.179	1	0.8730.100	0.8270.184	1	0.8820.147	0.8410.177	
A05+T3+E	742	0.8750.189	0.9030.109	0.8910.215	2	0.9160.038	0.8780.140	1	0.9190.091	0.8910.108	
A06+T1+E	10	0.8240.187	0.9020.037	0.8850.070	1	0.9090.034	0.8890.049	2	0.9090.039	0.8800.052	
A06+T3+E	24	0.8620.019	0.9160.059	0.9160.005	2	0.9340.001	0.9230.032	3	0.9330.041	0.9290.040	
A07+T1+E	67	0.8200.137	0.8770.184	0.8670.150	1	0.8900.108	0.8620.157	2	0.8970.104	0.8620.149	
A07+T1+N	251	0.8370.141	0.8920.085	0.8790.104	1	0.9030.057	0.8750.414	2	0.9050.070	0.8730.101	
A07+T3+E	12	0.925	0.9380.019	0.9370.019	2	0.9390.040	0.9160.035	1	0.9470.010	0.9320.017	
A07+T3+N	39	0.8630.177	0.9180.001	0.9130.071	2	0.9330.037	0.8990.14#	3	0.9340.039	0.9140.079	
A08+T1+E	26	0.6669.205	0.7500.101	0.6800.242	2	0.7470.197	0.6530.000	1	0.7930.184	0.6660.001	
A08+T3+E	111	0.6050.200	0.6680.197	0.6260.210	1	0.6770.200	0.6280.218	2	0.7350.166	0.6690.202	
A09+T1+E	30	0.8150.191	0.8410.005	0.7840.150	1	0.8730.009	0.8330.119	2	0.8840.076	0.8120.119	
A09+T1+N	1	0.9530.000	0.9270.000	0.9270.000	2	0.9550.000	0.9550.000	1	0.9470.000	0.9470.000	
A09+T3+E	10	0.9000.074	0.9180.054	0.9180.054	2	0.9330.035	0.9090.044	1	0.9370.040	0.9190.040	;
A09+T3+N	3	0.8940.070	0.9110.058	0.9110.058	2	0.9570.015	0.9570.015	3	0.944a.aso	0.944a.ese	- 3

If we model 3 styles, the best style can be the one that

- best matches 100% of images (perfect alignment), or
- best matches, say, 34% of images (weak alignment).

If we model 3 styles, the best style can be the one that

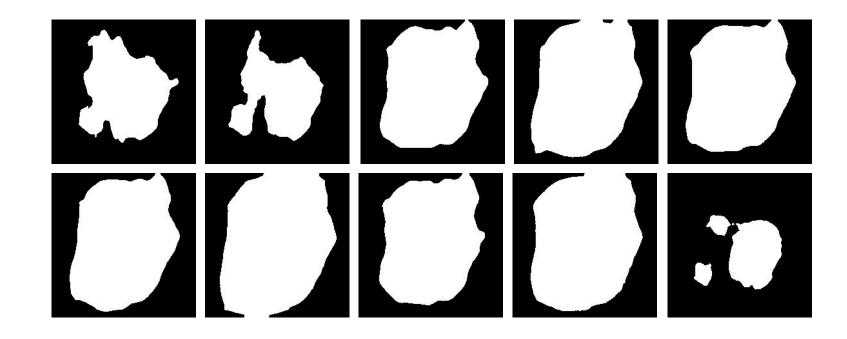
- best matches 100% of images (perfect alignment), or
- best matches, say, 34% of images (weak alignment).

How do we quantify this <u>annotator-style</u> <u>alignment strength</u>?

If we model 3 styles, the best style can be the one that

- best matches 100% of images (perfect alignment), or
- best matches, say, 34% of images (weak alignment).

How do we quantify this <u>annotator-style</u> <u>alignment strength</u>?

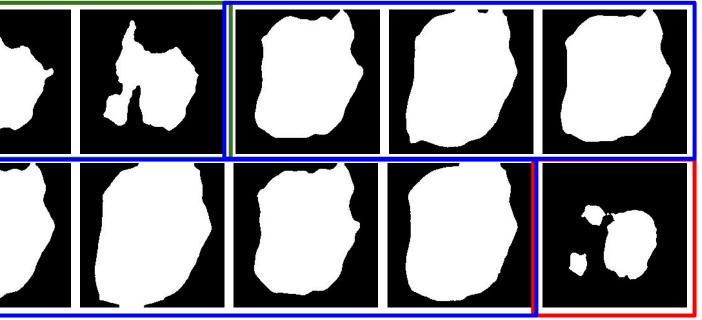

$$AS^{2} = 1 - \frac{-\sum_{i=1}^{M} q_{i} \log_{2} q_{i}}{-\sum_{j=1}^{M} \frac{1}{M} \log_{2} \frac{1}{M}}$$

If we model 3 styles, the best style can be the one that

- best matches 100% of images (perfect alignment), or
- best matches, say, 34% of images (weak alignment).

$$AS^{2} = 1 - \frac{-\sum_{i=1}^{M} q_{i} \log_{2} q_{i}}{-\sum_{j=1}^{M} \frac{1}{M} \log_{2} \frac{1}{M}}$$

If we model 3 styles, the best style can be the one that


- best matches 100% of images (perfect alignment), or
- best matches, say, 34% of images (weak alignment).

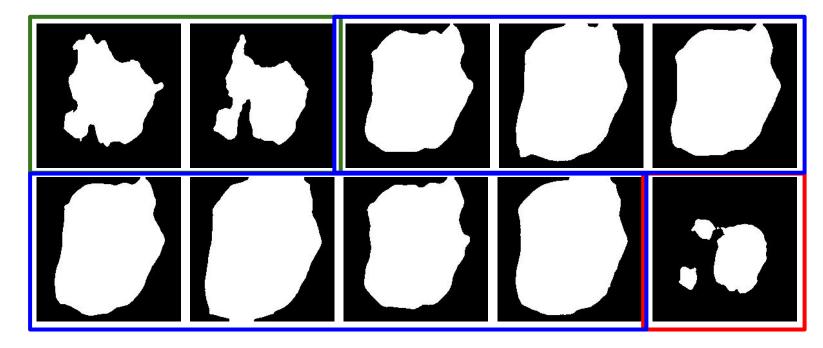
How do we quantify this <u>annotator-style</u> <u>alignment strength</u>?

$$AS^{2} = 1 - \frac{-\sum_{i=1}^{M} q_{i} \log_{2} q_{i}}{-\sum_{j=1}^{M} \frac{1}{M} \log_{2} \frac{1}{M}}$$

Style 1

Style 2

Style 2


Style 3

If we model 3 styles, the best style can be the one that

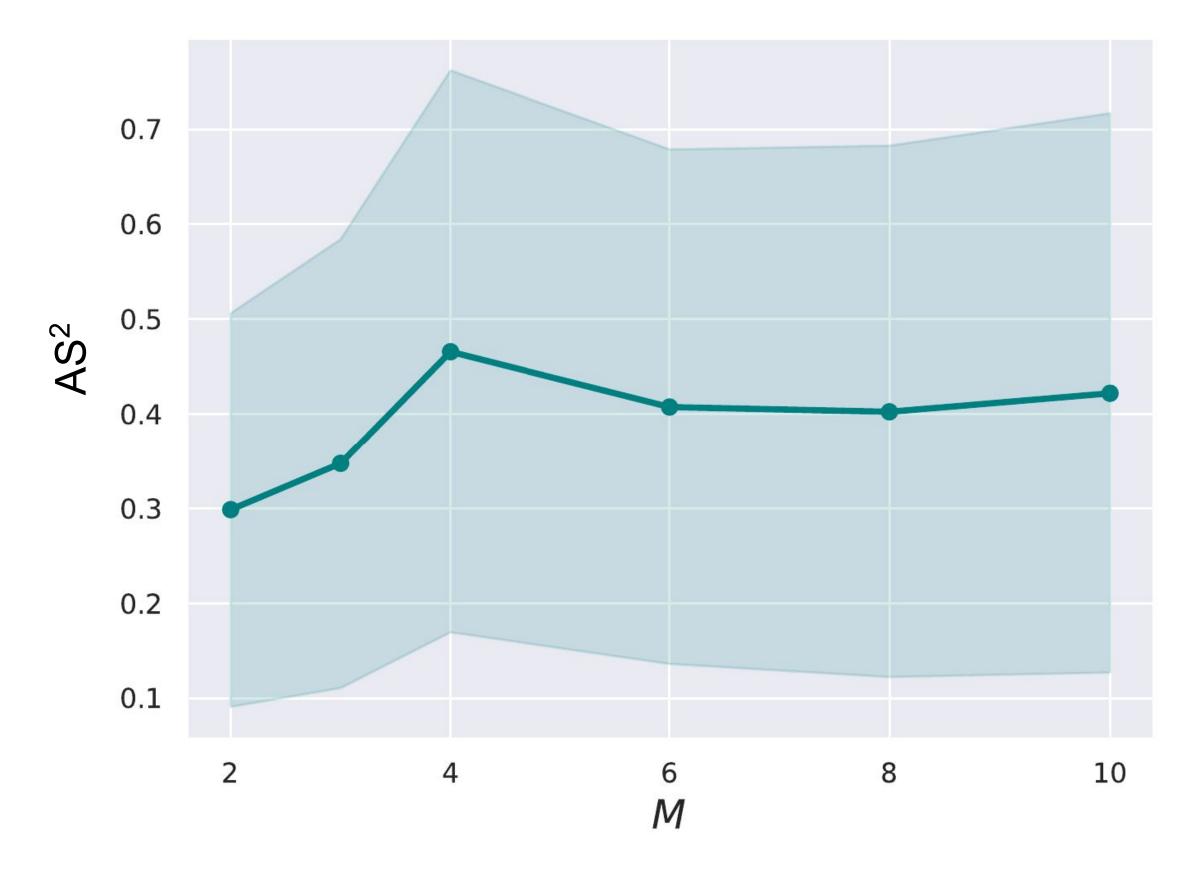
- best matches 100% of images (perfect alignment), or
- best matches, say, 34% of images (weak alignment).

How do we quantify this <u>annotator-style</u> <u>alignment strength</u>?

$$AS^{2} = 1 - \frac{-\sum_{i=1}^{M} q_{i} \log_{2} q_{i}}{-\sum_{j=1}^{M} \frac{1}{M} \log_{2} \frac{1}{M}}$$

Style 1

Style 2


Style 2

Style 3

 $q_1 = 0.2, q_2 = 0.7, q_3 = 0.1$

 $q = [0.2, \mathbf{0.7}, \mathbf{0.1}] \Rightarrow \mathsf{AS}^2 = 0.27.$

Quantifying Annotator-Style Alignment

Modeling more styles captures more diversity and is not detrimental to segmentation quality.

Formulated the problem of segmentation style discovery, and showed that StyleSeg discovers styles that are plausible, diverse, and semantically consistent.

- Formulated the **problem of segmentation style discovery**, and showed that StyleSeg discovers styles that are **plausible**, **diverse**, and **semantically** consistent.
- The largest multi-annotator SLS dataset (> 13.5k image-mask pairs) with annotator correspondence curated from the ISIC Archive.

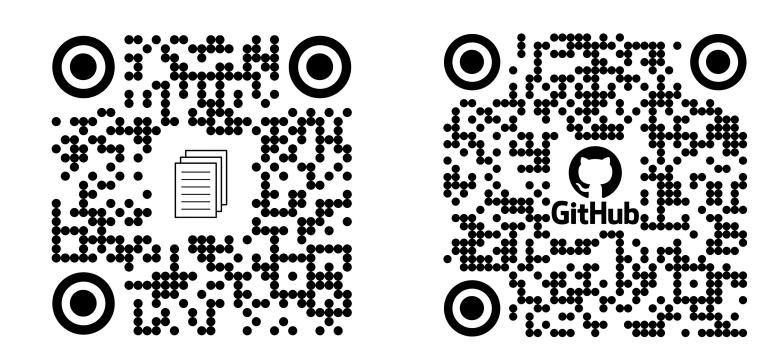
- Formulated the **problem of segmentation style discovery**, and showed that StyleSeg discovers styles that are **plausible**, **diverse**, and **semantically** consistent.
- The largest multi-annotator SLS dataset (> 13.5k image-mask pairs) with **annotator correspondence** curated from the ISIC Archive.
- A new measure for quantifying the strength of alignment between annotators' preferences and styles.

- Formulated the **problem of segmentation style discovery**, and showed that StyleSeg discovers styles that are **plausible**, **diverse**, and **semantically** consistent.
- The largest multi-annotator SLS dataset (> 13.5k image-mask pairs) with **annotator correspondence** curated from the ISIC Archive.
- A new measure for quantifying the strength of alignment between annotators' preferences and styles.
- **Future work** may look at approaches to **finding the optimal number of styles** in a segmentation dataset.

References

[1] Silletti et al., "Variability in human and automatic segmentation of melanocytic lesions", EMBC, 2009.

[2] Mirikharaji et al., "D-LEMA: Deep learning ensembles from multiple annotations-application to skin lesion segmentation", CVPR ISIC 2021.


[3] Ribeiro et al., "Less is more: Sample selection and label conditioning improve skin lesion segmentation", CVPR ISIC 2020.

[4] Rupprecht et al., "Learning in an uncertain world: Representing ambiguity through multiple hypotheses", ICCV 2017.

Thank you.

Questions?

Acknowledgements

Digital Research Alliance of Canada Alliance de recherche numérique du Canada

#