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Methods for Learning from Multiple Annotations

SSeg methods model and learn to 
predict a single “gold standard” 
segmentation.
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Methods for Learning from Multiple Annotations

SSeg methods model and learn to 
predict a single “gold standard” 
segmentation.

MSeg methods model and predict 
multiple segmentations to capture 
annotation variability.

Dataset requirement: 
multi-annotator segmentations 
containing image-mask pairs with 
annotator-segmentation 
correspondence.
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Latent factors unknown ⇒ difficult to define 
a segmentation “style”.
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Segmentations in ISIC Archive and their Variability

2,261 images with more than 1 “ground truth” segmentation mask 
⇒ 4,704 training image-mask pairs for skin lesion segmentation (SLS).
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● all the predicted segmentations are plausible,

● the predicted segmentations are diverse, and

● the segmentation styles are semantically 
consistent across all images.

?…
Given        , train a model that discovers unique annotation
                                                   styles such that:



StyleSeg produces multiple segmentation styles

StyleSeg
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StyleSeg Outputs Adapt to Variability in Lesion Content

ISIC_0003599  ISIC_0014337  ISIC_0003726  ISIC_0014831 

High-contrast
lesion has high 

agreement across 
styles

Instances of under- 
and over-

segmentation

Different boundary 
jaggedness across

segmentations

Ambiguous boundary 
causes segmentation 

masks to split



Semantic 
Consistency 
of Styles

40



Semantic 
Consistency 
of Styles

41



Semantic 
Consistency 
of Styles

42

In
cr

ea
si

ng
 b

ou
nd

ar
y 

ja
gg

ed
ne

ss

Under-
segmentation

Over-
segmentation



Semantic 
Consistency 
of Styles

43

In
cr

ea
si

ng
 b

ou
nd

ar
y 

ja
gg

ed
ne

ss

Under-
segmentation

Over-
segmentation



Competing Methods
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SSeg methods

NaiveTraining SLS model without any annotator-specific knowledge.

RandAnnotID[2] 4 SLS models, one optimized for each annotator randomly assigned to a 
mask.

LessIsMore[3] SLS model trained on a subset of the masks whose average pairwise 
Cohen’s kappa ≥ 0.5.

D-LEMA[2] Ensemble of Bayesian SLS models.
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SSeg methods

NaiveTraining SLS model without any annotator-specific knowledge.

RandAnnotID[2] 4 SLS models, one optimized for each annotator randomly assigned to a 
mask.

LessIsMore[3] SLS model trained on a subset of the masks whose average pairwise 
Cohen’s kappa ≥ 0.5.

D-LEMA[2] Ensemble of Bayesian SLS models.

MSeg methods

MHP[4] Multi-hypothesis prediction model, repurposed for SLS.
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Quantitative Results

Results on 4 datasets:

● ISIC Archive-Test (n = 10000)
● DermoFit (n = 1300)
● PH2 (n = 200)
● SCD (n = 206)
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Learning Multiple Styles Is Always Better

Learning to predict more than 1 
style (MSeg methods), even 
learning to predict 2 styles, 
consistently outperforms SSeg 
methods.
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Diversity Increases As More Styles are Learned

As M increases, a larger 
number of diverse 
segmentations are generated, 
and the max. Dice keeps 
improving.
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StyleSeg Outperforms MHP

StyleSeg consistently 
outperforms MHP for all values 
of M and for all datasets.

51



StyleSeg Outputs Are More Plausible

StyleSeg consistently 
outperforms MHP for all values 
of M and for all datasets.
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Moreover, as M increases, all 
StyleSeg outputs remain 
reasonably plausible, whereas 
MHP outputs exhibit diversity 
at the cost of plausibility.
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Even for datasets without 
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predict multiple styles is 
helpful.

53



Performance Improves Even on Single Annot. Datasets

Even for datasets without 
documented variability in 
segmentations, learning to 
predict multiple styles is 
helpful.

54



A New Multi-Annotator SLS Dataset: ISIC-MultiAnnot

The largest multi-annotator SLS dataset curated from the ISIC Archive.

55



A New Multi-Annotator SLS Dataset: ISIC-MultiAnnot

The largest multi-annotator SLS dataset curated from the ISIC Archive.

10 anonymized 
annotators

“A00” – “A09”

2 skill levels
“expert”, “novice”

3 tool choices
“T1” – “T3”12,951 images

56



A New Multi-Annotator SLS Dataset: ISIC-MultiAnnot

The largest multi-annotator SLS dataset curated from the ISIC Archive.

10 anonymized 
annotators

“A00” – “A09”

2 skill levels
“expert”, “novice”

3 tool choices
“T1” – “T3”12,951 images

13,555 image-mask 
pairs

27 unique annotator 
preferences 57



A New Multi-Annotator SLS Dataset: ISIC-MultiAnnot
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Quantitative Results on ISIC-MultiAnnot
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ISIC-MultiAnnot Results: Key Takeaways

1. Improved diversity without compromising quality: for all M ≥ 2, choosing 
a single style that, for each annotator preference, maximizes agreement with 
the “ground truth” still outperforms 1-StyleSeg.
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ISIC-MultiAnnot Results: Key Takeaways

1. Improved diversity without compromising quality: for all M ≥ 2, choosing 
a single style that, for each annotator preference, maximizes agreement with 
the “ground truth” still outperforms 1-StyleSeg.

Personalization in segmentation: each user can choose their own style.
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ISIC-MultiAnnot Results: Key Takeaways

1. Improved diversity without compromising quality: for all M ≥ 2, choosing 
a single style that, for each annotator preference, maximizes agreement with 
the “ground truth” still outperforms 1-StyleSeg.

2. Performance improves as M increases.

3. Ability to learn tool-specific latent factors: Without specifically training for 
it, a 3-StyleSeg model is able to choose a unique style for each of the three 
tools (“T1”, “T2”, “T3”).
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Quantifying Annotator-Style Alignment: A New Measure

If we model 3 styles, the best style can 
be the one that

- best matches 100% of images 
(perfect alignment), or

- best matches, say, 34% of images 
(weak alignment).
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q1 = 0.2, q2 = 0.7, q3 = 0.1

q = [0.2, 0.7, 0.1] ⇒ AS2 = 0.27.
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Quantifying Annotator-Style Alignment
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Conclusion

● Formulated the problem of segmentation style discovery, and showed that 
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● The largest multi-annotator SLS dataset (> 13.5k image-mask pairs) with 
annotator correspondence curated from the ISIC Archive.

● A new measure for quantifying the strength of alignment between 
annotators’ preferences and styles.

● Future work may look at approaches to finding the optimal number of 
styles in a segmentation dataset.
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