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Abstract. Al-based diagnoses have demonstrated dermatologist-level
performance in classifying skin cancer. However, such systems are prone
to under-performing when tested on data from minority groups that
lack sufficient representation in the training sets. Although data collec-
tion and annotation offer the best means for promoting minority groups,
these processes are costly and time-consuming. Prior works have sug-
gested that data from majority groups may serve as a valuable informa-
tion source to supplement the training of diagnostic tools for minority
groups. In this work, we propose an effective diffusion-based augmenta-
tion framework that maximizes the use of rich information from majority
groups to benefit minority groups. Using groups with different skin types
as a case study, our results show that the proposed framework can gen-
erate synthetic images that improve diagnostic results for the minority
groups, even when there is little or no reference data from these target
groups. The practical value of our work is evident in medical imaging
analysis, where under-diagnosis persists as a problem for certain groups
due to insufficient representation. Our implementation detail is available
at https://github.com/janet-sw/skin-diff.

Keywords: Skin Lesion Analysis - Diffusion Models - Data Augmenta-
tion.

1 Introduction

Al-assisted diagnostic systems demonstrate expert-level capability in classifying
skin cancers, often identified visually [6/I62]. These systems can potentially con-
tribute to teledermatology as diagnostic and decision-support tools, enhancing
diagnostic accessibility in rural areas [3]. However, despite such success, recent
studies have highlighted their susceptibility to under-diagnosing minority groups,
such as those with underrepresented skin types, hindering their ability to gen-
eralize across different demographic groups [4/I1]. Although the majority group
contains rich lesion information, directly training models for cross-color classifi-
cation using this data is challenging due to the domain gap caused by varying
skin types [24]. Prior research has suggested using synthetic images generated
from majority groups to supplement the training of AI for minority groups [19].
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Augmenting skin condition data with synthetic images has been explored,
owing to its potential to address common challenges for skin lesion analysis,
such as data privacy, imbalance, and scarcity. Notably, Generative Adversarial
Networks (GANs) [10] and Diffusion Models (DMs) [5] have emerged as lead-
ing techniques for generating high-quality skin lesion images. While GANs have
successfully produced photorealistic synthetic images, their generation is uncon-
trollable [9II8]. On the other hand, DMs pre-trained on extensive web data have
enabled higher controllability over image generation through the guidance of
textual prompts, allowing for the creation of diverse and high-fidelity images of
target skin conditions and skin types.

Existing studies have tried diffusion models to augment minority skin types
using two public datasets: Diverse Dermatology Images (DDI) [4] and Fitz-
patrick17k [IT]. Each image in these datasets is annotated with skin type labels
based on the Fitzpatrick scoring system [7]. In their work, [21] generated multiple
synthetic images for each real image using Stable Diffusion [20] and then trained
the classifier on a dataset including real and synthetic data. They found that
diffusion models can enhance diagnosis accuracy across skin types in binary ma-
lignancy classification on the DDI dataset, though the number of real images is
the key driver in performance. Additionally, [22] sampled a small number of seed
images with skin types at the ends of the Fitzpatrick spectrum (FST I-II and
FST V-VI) and carefully cropped the disease pathology in them, before generat-
ing synthetic data from the seeds using OpenAlI DALL-E 2’s inpainting feature.
They conducted class-wise data augmentation by incorporating synthetic images
of the target condition and minority skin type into the real training set. Other
related studies have focused on internal datasets [IUT5].

Despite these advancements, the potential to leverage diffusion models’ knowl-
edge about skin variation and the rich lesion information from majority groups
to benefit minority groups remains underexplored. In this work, we propose a
novel diffusion-based augmentation framework capable of learning skin lesion
concepts from majority groups and generating images to improve classification
performance for minority groups. Unlike current works that assume the existence
of data from minority groups, we hypothesize that the information gained from
majority groups and the diffusion model’s pre-trained knowledge is sufficient to
generate useful synthetic data. We test our hypothesis in a challenging multi-
condition classification task. The framework is illustrated in Fig. [Il We conduct
our experiments on the Fitzpatrickl7k dataset, which includes lesions that are
less familiar to diffusion models than common skin cancer. This dataset has a
skewed skin type distribution, with light skin types (FST I-II) being significantly
more than dark skin types (FST V-VI), thus forming majority and minority
groups. Our investigation focuses on images from both groups and is structured
around three scenarios with increasing difficulty: (i) the training source includes
some data from both groups; (ii) there is limited data from the minority group
in the training source; and (iii) the training source lacks data from the minority
group. Through extensive experiments and analysis, we found that:
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Fig. 1. Overview of the proposed augmentation framework. The framework pairs each
training image with a textual prompt describing the condition as an input to train
a latent diffusion model. Embeddings associated with new lesion concepts are found
through Textual Inversion. Compact matrices A and B are optimized via LoRA to
facilitate training with the new embeddings. During inference, the trained model pro-
duces synthetic images from the training set that mainly features the majority groups
via image-to-image generation, thus conditioned on visual cues of lesions from images
and textual prompts describing the target condition and group attributes.

— Our proposed method effectively leverages lesion information from the ma-
jority group to generate synthetic images that can improve classification for
the minority group across all settings, even without reference data from the
minority group.

— Using synthetic images generated by our method to train classifiers consis-
tently outperforms training with real images across various architectures.
Further improvement is observed when combining real and synthetic data.

— Our method is sensitive to information from the minority group. A notable
improvement can be observed when even a few examples from the minority
group are added to the training set.

2 Methods

In this section, we will introduce key techniques that have been adapted for skin
disease datasets in our proposed augmentation framework.

Latent Diffusion Models We implement our method using Latent Diffu-
sion Models (LDMs) [20], a class of Denoising Diffusion Probabilistic Models
(DDPMSs) [I3] that operate in the latent space of an autoencoder, to enable
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Basal Cell Nematode Neutrophilic Prurigo Squamous Cell
FST Folliculitis Psoriasis Total
Carcinoma Infection Dermatoses Nodularis Carcinoma
I 85 30 15 70 7 113 100 420
I 156 97 56 115 28 232 180 864
14 24 31 32 31 29 64 40 251
VI 7 9 12 15 9 21 23 96
Total 272 167 115 231 73 430 343 1631

Table 1. Sample distribution across skin conditions by Fitzpatrick Skin Type.

DDPM training with limited computational resources. LDMs include two core
components: a pre-trained autoencoder and a diffusion model. In our study, the
encoder of the autoencoder £ encodes skin lesion images = € D, into a latent rep-
resentation z = £(x), while the decoder D maps the latent representations back
to images, such that D (£(z)) ~ x. The diffusion model is trained to generate
representations conditioned on prompts describing skin disease and skin type,
within the learned latent space. Let cy(y) be a model that maps a conditioning
input y into a vector. We then learn the conditional LDM via

Lipym = ]Ezeé'(x)7 y, €EN(0,1), ¢t ||E - 69(2t3t769(y))”§ ) (1)

where t is the time step, z; is the latent noise at time ¢, € is the unscaled noise
sample, and ¢y is the denoising network.

Concept Discovery via Textual Inversion Our proposed framework lever-
ages Textual Inversion [§] to capture a unique embedding that accurately rep-
resents the targeted skin lesion concept from training data. Skin lesion images
paired with a string containing a placeholder word (e.g., ‘An image of {S,}’) are
used to guide the learning of a new lesion embedding for the generative model.
In particular, the optimal embedding v, that encapsulates the lesion concept S,
is derived by minimizing the reconstruction loss,

Vs = argminszNE(ﬂf)71/»6’\//\[(0,1),t [”6 - GQ(Zt, t7 Ca(y, S*))”g ) (2)

where the same training scheme as the original LDM model is used, with cy and
€p fixed.

Fine-grained Detail Enhancement with LoRA To enhance efficiency in
fine-tuning LDM, we employ Low-Rank Adaptation (LoRA) [14] in our frame-
work, with the discovered tokens after textual inversion. This fine-tuning strategy
freezes the pre-trained model weights and introduces two compact matrices A
and B, where A € R"*" B € R"*". The adaptation matrices AB are integrated
into the attention layers to capture fine visual details of the skin lesion that were
not initially present in the pre-trained model, with target embedding v,. The
optimization is formulated as

L i= Eone (@ gemn01) 1€ = €00n (21:t o (9, 0.)) 3] (3)
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Architecture Train Type Train Size Accuracy Precision Recall F1 Score
real 1519 70.24 £0.12 7249 £0.37  69.58 £0.30  70.48 £ 0.13
VGG-16 syn 1519 * 5 75.00 + 0.64 75.77 £ 0.39 73.17 £ 0.29 72.42 + 0.61
real + syn 1519 * 6 7798 £0.40 81.51 £0.25 7887 +0.23  77.45+ 0.29
real 1519 68.45 + 0,42  69.42 + 0.57  69.05 £ 0.42  67.94 + 0.35
ResNet-18 syn 1519 * 5 69.05 £ 0.36 69.57 £ 0.82 69.05 £ 0.42 68.02 £ 0.33
real + syn 1519 * 6 71.36 £ 0.69  69.02 £ 048  68.45 £ 040  67.56 £ 0.59
real 1519 70.38 £ 042  73.72£0.69 70.82 £0.39  70.61 £ 0.59
ViT-B-16 syn 1519 * 5 74.19 + 0.37 77.89 + 1.01 74.04 + 0.85 73.58 + 0.53

real + syn 1519 * 6 78.65 + 0.53 81.57 £ 0.47 79.17 + 0.84 78.24 £+ 0.64

Table 2. This table presents the results when the training set includes non-flexible
images from the minority group (291 of FST V-VI) and the majority group (1228 FST
I-1T). The test set is a flexible subset of the minority group (56 of FST V-VI), uniformly
distributed across the 7 conditions. Here, “real" indicates that the classifier is trained
solely on real images, while “syn" means that it is trained exclusively on synthetic
images generated by our framework. Accordingly, “real+syn" means the subsequent
classifier is trained on a combination of both.

3 Experiments

We conduct our experiments using the Fitzpatrick17k dataset, where each image
is annotated with a condition and a Fitzpatrick Skin Type (FST) label. In line
with [22], our analysis narrows down to a subset of the Fitzpatrick17k dataset,
encompassing 7 conditions (Table [I). These conditions were selected because
they represent the largest sample sizes at the ends of the Fitzpatrick Skin Type
(FST I-II or V-VI) spectrum. Unlike [22], our study excludes intermediate skin
types (FST III-IV), to explore the efficacy of our diffusion-based augmentation
in a more challenging and explainable way. We randomly sample 8 images for
each condition from the lightest (FST I-II) and darkest (FST V-VI) skin type
groups, resulting in a flexible subset of 56 images for each group.

We examine three scenarios: (i) the training set includes images of dark and
light skin types, and the test set features the uniformly distributed flexible subset
across the 7 conditions; (ii) the training set predominantly includes light-skinned
images and a few dark-skinned images, while the test set consists of dark-skin
data; (iii) the training set lacks dark-skinned images entirely, while the test set
comprises dark-skinned images. In all scenarios, we generate 5 synthetic images
for each real one in the training set during inference, using the fine-tuned model,
as illustrated in Fig. |1} In scenario (i), to ensure a sufficient number of examples
for both majority and minority groups in the training set, we designate the
flexible subset of dark skin as the test set and use remaining non-flexible images
for generator and classifier training. This setting also serves as the basis for
hyperparameter tuning of the diffusion model, with the selected hyperparameters
being fixed for subsequent experiments.

Implementation Details In each setting, we randomly sampled 5 flexible
subsets and repeated the experiment 5 times. We used the Stable Diffusion 2.1
base [20] and the Diffusers library [I7] for fine-tuning the diffusion model and
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Architecture Train Type Train Size Accuracy Precision Recall F1 Score
real 1284 58.79 £ 0.10  58.90 £ 0.03  58.26 £ 0.05  56.98 £ 0.04
VGG-16 syn 1284 * 5 62.86 £ 0.15 61.49 £ 0.15 63.32 £ 0.13 61.57 £ 0.24
real + syn 1284 * 6 63.66 £ 0.11  62.80 £0.12  64.08 £0.08 62.72 £ 0.18
real 1284 50.31 £ 0.30  50.45 £ 0.44  51.27 £0.30  48.23 £ 0.32
ResNet-18 syn 1284 * 5 56.36 £ 0.16  56.58 £ 0.13  59.78 £ 0.08  55.58 £ 0.10

real + syn 1284 * 6 61.33 £0.17  59.75 £ 0,12 62.52 £ 0.17  59.94 £ 0.17

real 1284 62.03 +0.19  63.09 £ 0.13  62.02+0.04 61.05 % 0.04
ViT-B-16  syn 1284*5  68.83+0.19 70.07+0.03 68224025 6834+ 0.19
real + syn 1284 * 6 71.20 + 0.07 71.61 = 0.19 71.53 £ 0.01 71.17 £ 0.13
Table 3. Classification results when the training set contains a few reference images
from the dark-skinned flexible subset (56 of FST V-VI) and non-flexible light-skinned
images (1228 of FST I-II). The test set includes all other dark-skinned images (291 of
FST V-VI) outside the flexible subset.

generating synthetic images. For classifier backbones, we utilized pre-trained
VGG-16 |23], ResNet-18 [12], and ViT-B-16 [25] and trained each classifier us-
ing the Adam optimizer with an initial learning rate of 1le-3 and transformations
as in [I1I]. A weight-based sampler and StepLR scheduler were applied. All ex-
periments were conducted on two NVIDIA GeForce RTX 3090s.

4 Results

To assess the efficacy of our augmentation framework across the three settings,
we train the classifier on data that includes real images only, synthetic images
only, or a combination of both, respectively. Our evaluation is based on four
metrics: accuracy, precision, recall, and F1. First, in the setting with some im-
ages from both majority and minority groups in the training set, we observe
that synthetic data enhances performance across all architectures (Table [2).
Specifically, classifiers trained on synthetic images consistently outperform those
trained solely on real ones, and the combination of both types of data for training
yields further improvements.

This trend of consistent improvement is also evident in the more challenging
scenarios where there are little or no reference images from the minority groups
(Tables [3| and in the training set. Notably, significant improvement is ob-
served when just a few reference images from the minority group are available in
the training set for image generation and classification. The transformer-based
classifier demonstrates a larger improvement gap over the real image baseline
than the CNN-based models. In the most challenging setting, with no reference
images from the minority group, the improvement margin narrowed, suggesting
that our pipeline effectively maximizes the use of limited information from the
flexible subset of the minority group during training. Despite these challenges,
the sustained improvements in the third setting validate our framework’s effec-
tiveness in transferring information across groups. Examples of real and synthetic
image pairs for each condition are presented in Fig.[2} Qualitatively, the synthetic



From Majority to Minority: A Diffusion-based Augmentation 7

Architecture Train Type Train Size Accuracy Precision Recall F1 Score
real 1228 55.58 £ 0.10  54.60 £ 0.11  51.84 £0.29  51.97 £ 0.45
VGG-16 syn 1228 * 5 57.62 + 0.09 56.62 + 0.15 55.42 + 0.20 55.36 £ 0.22
real + syn 1228 * 6 58.08 £ 0.08 57.36 £ 0.13  55.78 £ 0.17  55.85 + 0.23
real 1228 49.42 £ 0.36  49.79 £ 0.44  48.30 £ 0.23  47.42 £+ 0.30
ResNet-18 syn 1228 * 5 53.47 + 0.32 52.39 + 0.30 53.79 + 0.30 51.97 £ 0.29

real + syn 1228 * 6 56.50 £ 0.15  55.72 £ 0.15  55.10 £ 0.16  54.76 £+ 0.18

real 1228 57.66 + 0.35 61.89 £ 0.68 55.45 + 0.36 55.96 £ 0.51
ViT-B-16  syn 1228 * 5 58.94 £ 0.23 6279 £ 020  55.62 + 0.22  56.53 + 0.18
real + syn 1228 * 6 60.96 £ 0.31 64.57 £ 0.01 57.51 + 0.29 58.92 £+ 0.31
Table 4. Classification results when no image from the minority group is in the training
set, which only has non-flexible images of the majority group (1228 of FST I-II). The
test set has non-flexible images of the minority group (291 of FST V-VI).

images generated by our augmentation framework introduce more diversity to
the training sets, including variations in skin color and lesion patterns.

To further investigate our framework’s generation capabilities, we conduct
an ablation study comparing our framework with various generation strategies.
This study focuses on the first setting, where the test set consists of light- or
dark-skinned flexible images (56 for each type). We first examine the Stable
Diffusion’s vanilla text-to-image and image-to-image pipelines to generate syn-
thetic images. Next, we leverage Textual Inversion to learn the lesion embeddings
and then generate synthetic images from these embeddings, with text-to-image
and image-to-image pipelines. Since image-to-image outperforms text-to-image
in both vanilla SD and Textual Inversion generation, we focus on image-to-image
generation after fine-tuning the diffusion model using LoRA, to investigate if op-
timizing the diffusion model can benefit the generation even more. We train a
VGG-16 using only the synthetic images and then compare these generation
strategies with ours, as shown in Table

Overall, training classifiers on synthetic images generated by text-to-image
models proves less effective than employing image-to-image techniques, under-
scoring the importance of visual cues in augmenting skin lesion classification.
Additionally, using off-the-shelf models for image generation yields less improve-
ment than training strategies such as Textual Inversion and LoRA, regardless
of whether the target is a minority or majority group. Finally, the combination
of Textual Inversion and LoRA results in the highest accuracy, thereby vali-
dating the practicality of our design which integrates these two strategies. This
improvement can be explained by the model’s enhanced ability to associate the
fine visual cues of the lesion with the learned textual tokens.

Since a direct comparison with existing related works is challenging due to the
uncertain use of data, this ablation study can serve as an indirect comparison. As
introduced previously, related works leveraged off-the-shelf diffusion models such
as DALL-E or fine-tuned a Stable Diffusion model for text-to-image generation.
Our results demonstrate that utilizing the dual guidance of visual cues and text
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Fig. 2. Examples of synthetic images generated by a model trained exclusively on light-
skinned images, using prompts describing dark skin types.

txt2img img2img

test vanilla ti vanilla ti lora ti+lora

light (56) 18.80 35.36 48.21 46.43  52.00 53.57

dark (56) 21.22 44.64 69.64 71.43 73.21 79.57
Table 5. Classification accuracy with various generation strategies for the first setting.
Here, “vanilla" stands for Stable Diffusion’s original text-to-image and image-to-image
pipelines, “ti" for Textual Inversion, and “lora" for LoRA.

prompts via fine-tuning diffusion models can maximize the potential of diffusion-
based augmentation and enhance the diagnosis for minority groups.

5 Conclusion

In this work, we present an effective diffusion-based augmentation framework
that consistently improves classification results for the minority group, even
when training the classifier exclusively with synthetic images. This improve-
ment is observed regardless of the availability of reference data from the minority
group in the training set. The ablation study also validates that our framework’s
dual-guidance generation approach successfully learns novel lesion concepts pre-
viously unfamiliar to the diffusion models. A practical takeaway from this study
is that, even in cases of data scarcity, existing data and diffusion models can still
provide valuable insights, maximizing information usage and achieving better
performance. In the future, we plan to apply this technique to other medical
datasets characterized by significant differences in group sizes. Additionally, as
we used all synthetic images generated for each setting without any filtering
mechanism, we also aim to investigate which types of synthetic data are useful
for lesion diagnosis and how to generate them.
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