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Abstract. Vision Transformers (ViTs) are the current state-of-the-art
in deep learning for computer vision tasks. They are trained on vast
datasets and are capable of useful downstream tasks through clever use
of the attention mechanism.
The biggest limiting factor for ViTs is the number of pixels and tokens
that can be processed in a given pass. Memory constraints on both patch
size and the number of patches mean that ViTs are most effective at
processing relatively low-resolution images.
Whilst ViTs can attend very flexibly across an image, attending across
images in a naive fashion requires memory proportional to the square of
the number of images. This is a further limiting factor. Given the task of
automated assessment of psoriasis severity, a chronic skin condition that
can affect large portions of a person’s skin, it is necessary to look across
multiple images and at fine detail in large images.
We present a method that adapts ViTs to a two-stage design that allows
for the regression of a patient’s psoriasis score across multiple images
and resolutions and shows its effectiveness relative to a baseline ViT.
The implementation of our method is available at https://github.com/
KCL-BMEIS/multivit.git.

Keywords: Vision Transformer · Multi-image · Multi-resolution · Pso-
riasis

1 Introduction

Psoriasis is a common, incurable inflammatory skin disease associated with mul-
timorbidity and reduced life expectancy. It affects 2 million individuals in the
UK, and costs the NHS over £750 million (estimated) annually. Research has
successfully delivered several new psoriasis therapies over the past 2 decades [14],
but disease severity and evolution over time are still monitored through clinical
evaluation of skin lesions, which has well-recognised limitations.



2 B. Murray et al.

The Psoriasis Area Severity Index (PASI) [7] is the gold standard for disease
severity assessments. It integrates area of psoriasis involvement with erythema
(redness of skin), induration (thickening/hardening of skin) and scaling of pso-
riasis plaques. It is measured by clinicians and ranges from 0 (no disease) to 72.
A PASI of 10+ is considered severe. Physicial Global Assessment (PGA) is an-
other measure used to grade psoriasis. It is an overall assessment of all psoriasis
lesions on the body according to a Likert scale, which is a 6 point score between
0 (no psoriasis) and 5 (severe psoriasis). PGA is correlated with PASI.

Both PASI and PGA are time-consuming, highly subjective and poorly re-
producible (low intra- and inter-rater consistency). Assessments rely on face-to-
face contact between clinician and patient, which may not be deliverable with
increasingly limited healthcare resources.

Deep-learning-based computer vision has the potential to automate image-
based assessment of psoriasis severity. Initially created for language processing,
the state of the art transformer [12] architecture has been adapted to vision
tasks [5] with great success. Vision Transformers (ViTs) use image patches con-
verted to tokens rather than pixel values in isolation. This is done for two reasons.
Firstly, a pixel conveys very little semantic information, but a patch of pixels can
convey significant semantic information. Secondly, attention is O(T 2) in memory
usage for T tokens in a standard transformer architecture, as all pairwise patch
interactions must be considered. A position encoding is added to each of the
patches, and can be learned depending on the architecture, so that the network
can understand the spatial relationship between patches.

Transformers use Scaled Dot-Product attention; a mechanism that allows
ViTs to learn the relationship between image patches. ViTs typically use self-
attention, meaning patches of the same image attend to each other and to a class
token that captures image-level semantics and is typically used as the input to
class-level task heads. The class token allows ViTs to be trained to pay attention
to the parts of an image most important to the model task, or even to use the
patch to class attentions to act as semantic segmentation with only image-level
labels for training [2].

ViTs require images to be of a given resolution and trained at or fine-tuned
to a desired resolution. ViTs are configured to a given number of patches that is
typically constrained by memory usage, given that attention is O(T 2) in memory
for T patches. A typical patch size in pixels is around 162 to 322 as larger
patches require larger token memory to properly capture the information in a
patch. As such, ViTs generally handle image sizes between 2562 and 5122 pixels.
Commodity cameras have resolutions in the thousands of pixels squared, so fine-
grained detail may not be readily detectable by a ViT.

Given the nature of psoriasis, standard ViT architectures cannot perform
at their full potential. Psoriasis tends to occur across much of a patient’s body
rather than being limited to a single area, and is a heterogeneous condition
with the pattern of presentation varying widely between individuals. A patient’s
full presentation of psoriasis is not provided by a single image in the general
case, and many of the images are whole body images of a high resolution that
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must be downsampled to a much lower resolution to fit in a ViT architecture,
necessitating a dramatic drop in detail.

Skin type is a confounding factor automated psoriasis assessment. The Fitz-
patrick Skin Type (FST) [6] puts skin tones into six categories. Automated
assessment for people with FST V and V I is a challenge as psoriasis does not
present as distinctly in images as it does for FST I to IV , and datasets tend to
have few people with FST V and V I.

In order for ViTs to pay attention across multiple images, images can be
packed into a single composite image. For N images having T patches each,
the memory requirement is O((NT )2) as every image patch must attend to
every other image patch across the images. This typically necessitates reducing
the resolution of the images or using fewer patches per image. For biomedical
imaging, in which fine-grained texture is generally important in the assessment
of a condition, this might negate any advantage of being able to attend between
images.

We present a novel method, MultiViT, with a mechanism that adaptively
focuses on regions across multiple related images in order to focus on important
features and thus capture a person’s whole psoriasis presentation. Mechanisms
to increase resolution for the most clinically relevant subsections of the images
are also presented. We demonstrate its effectiveness in the prediction of PASI
scores given images.

2 Related Work

Multiple Instance Learning is a technique that attempts to learn across multiple
related images, and approaches such as [9] use earlier forms of attention to look
across multiple images.

SparseViT [3] is a shifted window (SWIN) [10] transformer-based model de-
veloped to efficiently parse high resolution images with low latency. SparseViT
is designed to skip less important regions of a high-resolution image via the L2
norm of each window activation to focus on key image areas (for example the
detection of pedestrians for self-driving cars). SparseViT is focused on mitigat-
ing latency with minimal performance loss, whereas the goal for MultiViT is
to maximise auto-diagnostic power, as latency is not a significant factor in our
clinical pipeline.

NaViT [4] is a method to improve training time for large scale networks with
large scale datasets during pre-training. It allows ViTs to be trained on multiple
images of differing aspect ratios. During training, a set of images is packed into
a set of tokens and masked to prevent attention between images. They use a
novel position encoding to avoid deforming images of different aspect ratios that
factorizes position in to x, y components, meaning that image patch grids can
be adapted to any aspect ratio. In contrast to NaVit, MultiViT allows attention
between images to exploit relationships between them. MultiViT also avoids
windowed attention as we want to maximise the use of the attention mechanism
on each image.
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3 Method

MultiViT is a novel adaptation of the ViT architecture that enables memory-
efficient adaptive attention across multiple images. It does so via two mecha-
nisms. Firstly, MultiViT implements adaptive attention with a fixed patch bud-
get, meaning that for N images, each having T patches, it uses O(NT 2) memory,
rather than O((NT )2) memory for a vanilla ViT. Secondly, MultiViT can op-
tionally focus on critical tokens at an increased resolution, narrowing its field of
focus but enabling it to better exploit fine-grained resolution where required.

MultiViT is composed of two ViT stages that are connected together by our
Attention Filter module. Each stage of the MultiViT architecture consists of
a ViT model backbone that has been pre-trained on a large, general-purpose
dataset. One or more attention heads are added to the class token output of the
ViT model and used to fine-tune the model on image-level labels.

The MultiViT architecture is depicted in Figure 1 and consists of the follow-
ing stages:

Stage 1 is executed on a set of N related images (from a given patient). Each
image execution generates tokens and class-to-patch attentions on a per-image
basis based on the task head losses for Stage 1.

The Attention Filter module ranks, selects and composes the most influential
tokens from the Stage 1 executions. It creates a composite hidden state and
composite image from the image patches corresponding to the tokens kept from
Stage 1.

Stage 2 is a slightly modified ViT that takes the composite hidden state and
composite image as its inputs, and calculates a final task score using its own
task heads. It has a Token Concatenator module that can merge the composite
tokens with tokens embedded from the composite image.

3.1 Attention Filter

The Attention Filter, shown in figure 1 (a) creates the composite hidden state
and composite high-resolution image from the tokens output by the executions
of Stage 1 as follows:

The Attention Scorer ranks tokens for all N input images output by Stage
1 by their activation strength relative to their corresponding class token. The T
most highly ranked tokens are selected and the rest discarded.

The Mapping Generator generates a mapping for the selected tokens from
their source hidden states to the composite hidden states and a mapping for
the corresponding image patches that the tokens map to in the high resolution
images.

The Token Mapper takes the Stage 1 hidden states and the token mapping
and creates a composite hidden state. Given a resolution multiplier of ratio R,
each patch token from Stage 1 maps to R × R input patch tokens for Stage 2.
Class tokens from Stage 1 are discarded.

The Patch Mapper takes the image patch mapping and uses it to select image
patches from the high-resolution version of the images. The resulting composite
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Fig. 1. The MultiVit architecture. MultiViT consists of three stages. Stage 1 is a
standard ViT that is executed on multiple images, sequentially. The Attention Filter
(a.) takes the resulting patch tokens and attentions from Stage 1, ranks those tokens
by importance to the Stage 1 class token and then generates mappings for the T most
important tokens. The Attention Filter generates a composite hidden state of surviving
tokens and the corresponding compound image. These are then input to a modified
Stage 2 ViT.

image is passed through the Stage 2 patch embedder to generate a set of high-
resolution tokens.

Critically, because tokens selected by the Attention Filter are passed to Stage
2, gradients from Stage 2 also inform Stage 1, and the overall network learns
from the task heads of both stages concurrently.

The Token Concatenator added to Stage 2 takes the hidden state from Stage
1 and concatenates it with the hidden state from the embedded high-resolution
image patches. This is done by concatenating the two sets of tokens along the
hidden axis and then passing them through a Linear layer to reduce them back
to the standard hidden size. These resulting tokens are then passed to the rest
of the Stage 2 ViT.

3.2 MultiViT Configurations for Ablation

MultiViT has three configuration parameters, Mode, N, and R.
Mode controls whether patch tokens are passed between Stage 1 and Stage

2. In Multi mode, this is enabled, but in Partial mode it is disabled. N is a
positive integer value that controls how many images are being attended across
for each sample. R is a positive integer value that sets the resolution multiplier
for Stage 2.

Mode and R determine in combination whether patch tokens and image
patches are output from the Attention Filter. For Multi-N-1 the Attention Filter
outputs only composite patch tokens. For Multi-N-2, it outputs both compos-
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ite patch tokens and a composite (high-resolution) image. For Partial-N-1 and
Partial-N-2, it only outputs a composite image to Stage 2.

The Token Concatenator is only used if both composite tokens and a com-
posite image are required by the configuration.

4 Experiments

4.1 Dataset

The dataset used here is an internal clinical dataset gathered from consenting
psoriasis patients. It is comprised of 1109 color images of 152 patients with
demographics and clinical information. 763 images are professional medical pho-
tographs and 346 are self-taken photographs. Images are de-identified by dig-
itally removing heads and features such as tattoos. Demographic and clinical
data includes FST, PASI, and PGA.

Images range from 480 to 6016 pixels in width and 480 to 4640 pixels in
height, with aspect ratios between 1 : 0.45 and 2.41 : 1. The dataset is augmented
by randomly cropping up to 10% of the borders of each image. This is done before
resampling the data to (384, 384) for low resolution images and (384×R, 384×R)
for high resolution images so that the augmentation is consistent for low and high
resolution images. 80% of the patients are used for the training fold and 20%
kept as the test fold and never trained upon.

The dataset is heavily biased toward FSTs of I-IV . In the training fold, there
are 104 patients with FSTs I-IV and 18 with FSTs V -V I. In the test fold, there
are 24 patients with FSTs I-IV and 6 with FSTs V -V I.

4.2 Model

The model uses the HuggingFace [13] ViTModel as a donor architecture, with
configuration and starting weights from ’google-vit-large-patch32-384’. This model
accepts images of 384×384 and has a patch size of 32, meaning there are 12×12
patches per image. Each model has 23 multi-head attention blocks with 16 chan-
nels and a hidden size of 1024. The model uses absolute positions that are learned
during training. The model weights have no task heads; these are trained during
our fine-tuning step.

We make use of two values from the dataset when training the model PASI
and clinical severity. Two scores are provided for each patient, we use the score
from the first rater throughout. The task heads are configured to be Multi Layer
Perceptrons [11] with a hidden layer of size 128 or 256. The two configurations
used during the experiments are (PASI(128) & PGA(128)) and (PASI(256) &
PGA(128)).

The model is trained for 300 epochs. Fine-tuning is employed, with the em-
bedding layers, the last 5 attention layers, and task heads unfrozen. Weight
decay is set at 0.01 and the hidden layer dropout is set to 0.1. Learning rate is
initialised to 1e− 4 and linearly decays over 300 epochs to 1.25e− 7.
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5 Results and Discussion

Tables 1 and 2 show the performance of the different network configurations
in terms of Mean Absolute Error (MAE) and Mean Signed Error (ME) for the
PASI regression task.

Table 2 shows that Baseline is outperformed by all four configurations of
MultiViT, coming last or second to last in all evaluation metrics.

Multi-3-1 has the best MAE for PASI and is within clinically acceptable
inter-rater variance over the dataset as a whole, taken to be an MAE of 4.67
from 43 dermatologists reported by [8]. It has the second best MAE over FSTs
I to IV .

All configurations tend to under evaluate PASI, although MultiViT improves
this tendency over the Baseline configuration. Figure 2 presents this visually.

Interestingly, the MultiViT configurations with R set to 2 do not demonstrate
a consistent improvement across the metrics evaluated. We note however that
Partial-3-2 significantly outperforms other configurations on FST V-VI for MAE
and ME, and Multi-3-2 has the best overall ME performance, indicating less
tendency to under evaluate PASI.

Performance of all networks on FSTs V to V I indicates that more patients
with these skin types are needed.

A direct comparison with the literature is complicated by lack of publicly
available datasets and implementations. Current studies employ convolutional
neural networks trained on professional medical photographs of clinical poses,
demonstrating an MAE of 3.12 with a dataset of 14096 images from 2367 pa-
tients [8], and an MAE of 3.3 on a dataset of 2700 images of 60 patients [14]
taken over treatment course.

Task heads Baseline Multi-3-1 Multi-3-2 Partial-3-1 Partial-3-2
PASI(128)+PGA(128) (5.361) 5.210 4.024 4.860 4.836 5.242
PASI(256)+PGA(128) (5.281) 5.127 3.877 4.220 4.674 4.516

Table 1. Mean Absolute Error (MAE) for various MultiViT configurations against
the baseline ViT model. Lower scores are better. Bold entry indicates the best score.
Entry in parentheses indicates the per-image MAE.

6 Conclusion and Further Work

Our proof of concept method highlights that ViTs can be adapted to effectively
handle the challenges posed by psoriasis. Our MAE of 3.877 is within a reported
inter-rater MAE of 4.67, despite the limited size of our dataset. Critically, the
ability to learn from a mixture of self-taken photos and clinical photos may open
new avenues for remote app-based psoriasis monitoring.

The following are identified as limitations of this work:
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Metrics Baseline Multi-3-1 Multi-3-2 Partial-3-1 Partial-3-2
MAE (per-image) 5.281 — — — —

MAE 5.127 3.877 4.220 4.674 4.516
MAE (I-IV) 3.968 2.804 2.736 3.402 4.283
MAE (V-VI) 9.763 8.167 10.158 9.761 5.451

ME -3.192 -2.402 -1.741 -2.644 -2.721
ME (I-IV) -1.717 -1.178 0.117 -0.865 -2.081
ME (V-VI) -9.093 -7.298 -9.172 -9.761 -5.281

Table 2. MAE and Mean signed Error (ME), for the dataset as a whole and for FST
I-IV vs. V-VI for Baseline and MultiViT configurations with PASI(256)+PGA(128)
task heads. Bold indicates the best score for a given metric and italics indicates the
second best score.

Fig. 2. Histograms of predicted PASI - actual PASI for the test fold of our psoriasis
dataset. This figure highlights the tendency of all the different architectures to under-
estimate PASI.

Primarily, we are limited by the small size of our dataset and the lack of
public psoriasis datasets with gold-standard annotations due in part to the iden-
tifiable and sensitive nature of skin photographs. We are in the process of greatly
expanding our internal dataset, especially for FST V − V I.

We will further demonstrate this architecture on non-psoriasis datasets with
public benchmarks. We are looking for other medical and non-medical tasks
that benefit from efficient attention over multiple images. Additionally, many
classification / regression tasks involve high resolution single images in which
only small areas of the image are of importance, such as digital histopathology
and dermoscopic images, and our method can be readily adapted to these.

There are a number of architectural improvements that we intend to make
to MultiViT. These include but are not limited to adaptive patch geometry,
attention scoring mechanism [1], a more general adaptive attention mechanism
and the use of attention-based semantic segmentation to enhance token selection
and model interpretability.
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