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Abstract. While deep learning-based computer-aided diagnosis for skin
lesion image analysis is approaching dermatologists’ performance levels,
there are several works showing that incorporating additional features
such as shape priors, texture, color constancy, and illumination further
improves the lesion diagnosis performance. In this work, we look at an-
other clinically useful feature, skin lesion elevation, and investigate the
feasibility of predicting and leveraging skin lesion elevation labels. Specif-
ically, we use a deep learning model to predict image-level lesion elevation
labels from 2D skin lesion images. We test the elevation prediction accu-
racy on the derm7pt dataset, and use the elevation prediction model to
estimate elevation labels for images from five other datasets: ISIC 2016,
2017, and 2018 Challenge datasets, MSK, and DermoFit. We evaluate
cross-domain generalization by using these estimated elevation labels as
auxiliary inputs to diagnosis models, and show that these improve the
classification performance, with AUROC improvements of up to 6.29%
and 2.69% for dermoscopic and clinical images, respectively. The code is
publicly available at https://github.com/sfu-mial/LesionElevation.
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1 Introduction

Skin cancer is highly prevalent globally and the most commonly diagnosed cancer
in the USA [5] with over 5 million annual diagnoses [35]. Although it accounts for
a small fraction of all skin cancers, melanoma is the deadliest form with an esti-
mated 99,700 diagnoses and 8,290 deaths in 2024 in the USA alone, and timely
diagnosis is critical as early detection results in a 99% estimated 5-year survival
rate. Deep learning (DL)-based methods have proven to be successful in improv-
ing image-based clinical decision support systems with expert-level computer-
aided dermatological diagnosis [21,10]. While DL-based methods have demon-
strated remarkable performance, there is a considerable body of research show-
ing that incorporating additional features, such as shape priors [33], texture [46],
color constancy [36], and illumination [2], can further improve skin lesion image
analysis. Another feature that has been shown to enhance lesion diagnosis and
clinical management prediction, using both classical machine learning [29] and
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Fig. 1: Visualizing the difference between skin lesion elevation versus depth. In-
vasion levels inset figure courtesy of Melanoma Institute Australia [31].

DL methods [27,26,37,3,32], is lesion elevation. However, learning-based methods
have yet to incorporate lesion elevation prediction into computerized diagnosis.

The American Cancer Society’s ABCDE criteria include elevation (E) as one
of the components [43]. Moreover, in the clinical setting, dermatologists often
palpate the skin to examine the lesion when making a diagnosis [16]. Case in
point, a study showed that palpation alone, without any visual assessment, was
sufficient to correctly diagnose 14 of 16 cases [17]. With the rise of teledermatol-
ogy, partly accelerated by external factors such as COVID-19 [4], one of the major
reasons for dermatologists’ dissatisfaction with teledermatology is the inability
to palpate lesions [18,20]. This is particularly pressing for “store-and-forward”
teledermatology, where images are captured and submitted alongside patient
history, which has been adopted for its efficiency and low cost, is imperfect since
“even good quality photos are two-dimensional; raised lesions . . . for example,
may be difficult to distinguish from flat lesions of a similar colour ” [16]. Clinical
and dermoscopic images of lesions do not capture elevation, and while it is rec-
ommended to capture tangential views of lesions in teledermatology, measuring
elevation is not easy to do with limited camera views, making the examina-
tions “less complete” [8,25]. Therefore, while teledermatology has the potential
to improve triage, access to care for underserved communities, and patient con-
venience [34,15,40,24], it would greatly benefit from being able to leverage lesion
elevation information as a proxy for in-person palpation. Solutions to bridge this
gap could be either in the form of patient side hardware [28], which is expen-
sive to develop, maintain, and deploy, or purely software-based approaches to
estimate lesion elevation from single RGB images, which we focus on.

Before proceeding, it is worth clarifying the difference in terminology vis-à-
vis lesion “elevation” and “depth” (Fig. 1), and how these terms differ in their
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(a) Sample dermoscopic and clinical images
from derm7pt showing the three image-level
lesion elevation labels.

(b) Distribution of elevation. Note
the absence of a clear diagnosis-to-
elevation mapping.

Fig. 2: derm7pt dataset: (a) sample images categorized by elevation labels and
(b) distribution of elevation labels across diagnoses.

usage in dermatology compared to traditional computer vision. Lesion elevation
refers to the lesion’s surface and how it protrudes above the outer skin surface
(epidermis). On the other hand, lesion depth or thickness, unlike the definition of
depth in computer vision, refers to the depth of invasion of melanoma underneath
the skin surface and is used for melanoma staging, measured using scales such
as Breslow’s depth [9] and Clark level [11].

While lesion elevation has been used along with other clinical metadata (e.g.,
gender, lesion location, and age) for skin lesion image analysis tasks and has
shown to improve performance [26,3], to the best of our knowledge, there is no
work that explores either the utility of elevation alone as a metadata, or the fea-
sibility of predicting elevation from 2D RGB skin lesion images. In this work, we
pose three research questions: (i) can we predict, with sufficient accuracy, lesion
elevation from a single lesion image?; (ii) does lesion elevation alone, without
any other metadata, improve lesion diagnosis?; (iii) can we leverage an elevation
prediction model to infer elevations on datasets without ground truth elevation,
thus potentially improving the diagnosis accuracies thereon? Our results show
that the answer is affirmative to all these questions.

2 Method

The dataset: Let (X ,Y, E) be the dataset of images, diagnosis labels, and eleva-
tion labels. Specifically, X = {Xi}Ni=1 is the set of skin images with corresponding
diagnosis labels Y = {Yi}Ni=1 and single image-level elevation labels E = {Ei}Ni=1,
where Xi ∈ RH×W×3, Yi ∈ {1, 2, · · · , ND}, and Ei ∈ {1, 2, · · · , NE}, and ND

and NE denote the total number of diagnosis and image-level elevation class
labels, respectively.
A diagnosis prediction model: A diagnosis prediction model fD, parameter-
ized by ΘD, is trained to generate disease predictions from images,

Ŷi = fD(Xi;ΘD). (1)
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Leveraging ground truth elevation labels for diagnosis prediction: The
fD model architecture can also be modified to take the elevation label as an
auxiliary input for diagnosis prediction,

Ŷi = fDE(Xi ⊕ Ei;ΘDE), (2)

where ⊕ is a combination operator.
Predicting elevation labels: Additionally, since we have images with corre-
sponding image-level elevation labels, we can also train a DL-model g to predict
elevation labels from an input image,

Êi = g(Xi;Φ), (3)

where Êi ∈ RNE is an NE-element probabilistic prediction of the elevation label.
We denote elevation class label with the highest predicted probability as Êmax

i =

argmaxj Êij . For example, if NE = 3 and Êi = [0.1, 0.7, 0.2], then Êmax
i = 2.

Leveraging predicted elevation labels for diagnosis models: Finally,
given a trained elevation prediction model g, we use this model to infer ele-
vation labels (Eqn. 3) on datasets without ground truth elevation, and use these
labels as auxiliary inputs to re-train the diagnosis prediction model,

Ŷi = fDÊ(Xi ⊕ Êi;ΘDÊ). (4)

More details about exact model architectures, losses, and metrics for evalu-
ation are discussed in the next section.

3 Results and Discussion

Datasets: Since skin lesion elevation data is expensive and difficult to acquire,
there are, to the best of our knowledge, only 2 publicly available datasets with
lesion elevation labels: PAD-UFES-20 [38] and derm7pt [26]. PAD-UFES-20 con-
tains 2,298 smartphone camera images of skin lesions with binary labels indi-
cating if a lesion is elevated or not, whereas derm7pt contains 1,011 cases with
clinical and dermoscopic images with 3 elevation class labels: “flat”, “palpable”,
and “nodular”, and because of the relatively more granular elevations and the
presence of two imaging modalities in the latter, we use derm7pt for our exper-
iments. We partition the dataset with elevation label-based stratification into
training, validation, and testing sets in the ratio of 70:15:15, accounting for the
inherent class imbalance: “flat”: 448 cases, “palpable”: 440 cases, “nodular”: 123
cases. See Fig. 2 (a,b) for sample images from different elevation labels and
diagnosis-wise distribution of elevation labels, respectively. We group the diag-
nosis labels in derm7pt into 5 classes as originally proposed by Kawahara et
al. [26]: BCC (basal cell carcinoma), MEL (melanoma), NEV (nevi), SK (se-
borrheic keratosis), and MISC (miscellaneous). Although some elevation labels
appear more or less frequently with certain diagnoses, we note that there is no
direct diagnosis-elevation mapping, and elevation labels are distributed across
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Table 1: Results (accuracy and area under the ROC curve (for skin lesion el-
evation prediction from clinical and dermoscopic images of derm7pt. Reported
values are the mean ± std. dev. averaged over 3 runs. Numbers in [·] present the
95% CI values. Bold values denote the best values for the metrics.

Model Clinical Images Dermoscopic Images

Architecture # Params (M) Accuracy ↑ AUROC ↑ Accuracy ↑ AUROC ↑

MobileNetV2 2.228
0.8234 ± 0.0515

[0.7954, 0.8514]

0.7474 ± 0.0496

[0.7251, 0.7697]

0.8039 ± 0.0552

[0.7780, 0.8298]

0.7789 ± 0.0536

[0.7549, 0.8029]

MobileNetV3L 4.206
0.7969 ± 0.0561

[0.7712, 0.8226]

0.7326 ± 0.0535

[0.7111, 0.7541]

0.7908 ± 0.0576

[0.7659, 0.8157]

0.7481 ± 0.0552

[0.7260, 0.7702]

EfficientNet-B0 4.011
0.8190 ± 0.0582

[0.7914, 0.8466]

0.7444 ± 0.0570

[0.7222, 0.7666]

0.8257 ± 0.0573

[0.7978, 0.8536]

0.8088 ± 0.0563

[0.7825, 0.8351]

EfficientNet-B1 6.517
0.8013 ± 0.0604

[0.7752, 0.8274]

0.7284 ± 0.0602

[0.7071, 0.7497]

0.8344 ± 0.0604

[0.8056, 0.8632]

0.8033 ± 0.0576

[0.7774, 0.8292]

DenseNet-121 6.957
0.8146 ± 0.0589

[0.7874, 0.8418]

0.7405 ± 0.0568

[0.7186, 0.7624]

0.8301 ± 0.0589

[0.8018, 0.8584]

0.7931 ± 0.0544

[0.7680, 0.8182]

VGG-16 14.724
0.8543 ± 0.0632

[0.8229, 0.8857]

0.8220 ± 0.0610

[0.7941, 0.8499]

0.8475 ± 0.0592

[0.8173, 0.8777]

0.8152 ± 0.0582

[0.7883, 0.8421]

ResNet-18 11.178
0.8190 ± 0.0582

[0.7914, 0.8466]

0.7321 ± 0.0555

[0.7106, 0.7536]

0.7996 ± 0.0536

[0.7740, 0.8252]

0.7653 ± 0.0530

[0.7422, 0.7884]

ResNet-50 23.514
0.7660 ± 0.0607

[0.7425, 0.7895]

0.6927 ± 0.0576

[0.6732, 0.7122]

0.8083 ± 0.0576

[0.7820, 0.8346]

0.7586 ± 0.0536

[0.7359, 0.7813]

all diagnoses in our dataset (an exception is that BCC and SK have almost no
“flat” elevations).

In addition, we also use five other datasets for diagnosis prediction that do
not contain ground truth elevation labels: (i) ISIC 2016 [23], (ii) ISIC 2017 [13],
(iii) ISIC 2018 [12], (iv) MSK [1], and (v) DermoFit [7], where (i) is a binary
classification dataset and all others are multi-class classification datasets. Note
that (i)-(iv) are dermoscopic image datasets while (v) contains clinical images.
For (i)-(iii), we use the standard dataset partitions, and for (iv), (v), we generate
training, validation, and testing partitions in 70:10:20 ratio.
Experiment 1: Can we predict skin lesion elevation labels from im-
ages alone? To test the feasibility of predicting skin lesion elevation labels
directly from images, we train eight different DL model architectures on the
derm7pt dataset. Specifically, we train elevation prediction models g that, given
a skin lesion image Xi, predict the elevation label Êi (Eqn. 3). We choose the
architectures from a variety of families, covering a large range of model sizes
(see parameter counts in Table 1): ResNet-18 and ResNet-50, MobileNetV2 and
MobileNetV3L, DenseNet-121, EfficientNetB0 and EfficientNetB1, and VGG-
16. For all architectures except VGG-16, we modify the final layer to predict 3
classes (NE = 3 for derm7pt). However, since a large number of parameters in
VGG-16 emanate from the fully-connected layers, we modify the architecture by
replacing these fully-connected layers with a global average pooling layer [44].
We use ImageNet-pretrained weights for initialization. All models are trained



6 Abhishek and Hamarneh

flat flat palpable palpable nodular nodular

D
er
m
os
co
pi
c

C
lin
ic
al

Fig. 3: Visualizing class activation maps for skin lesion elevation label prediction
for dermoscopic and clinical images, generated through GradCAM. Notice how
the activation areas are focused around the lesion regions, indicating that the
prediction model g does not learn to rely on spurious features or “shortcuts”.

for 50 epochs with stochastic gradient descent and momentum of 0.9, weight
decay of 1e-4, batch size of 32, and a learning rate of 1e-2 which was decayed
by a factor of 0.1 every 10 epochs. All images are resized to 224 × 224 and we
augment the images with horizontal and vertical flips and rotations in multiple
of 90°. To account for the inherent class imbalance, we use the cross-entropy loss
with median frequency balancing to assign class weights, i.e. class-wise weights
in the loss calculation are weighted by the ratio of the median of class frequencies
in the entire training set to each class’s frequency [19,6]. The model with the
best area under the ROC curve (AUROC) on the validation set was chosen for
evaluation. All experiments were repeated 3 times for robust results.

Table 1 lists the quantitative results for elevation prediction on both clini-
cal and dermoscopic images in the derm7pt dataset. We report mean and the
std. dev. of the overall accuracy of classification as well as the AUROC across
3 repeated runs, as well as the 95% confidence intervals (CIs). We observe that
while all architectures are able to predict elevation labels reasonably accurately,
the VGG-16 model performs the best across both imaging modalities. To ascer-
tain that this performance is not due to the model learning spurious features or
“shortcuts” in the images to make the predictions, we generate the class activa-
tion maps (CAMs) for the VGG-16 model using GradCAM [42]. Sample CAMs
for both modalities and all elevation labels are shown in Fig. 3. We observe
that the CAMs are almost completely contained within and around the lesion
regions, suggesting that the elevation predictions are indeed based on lesion fea-
tures. Since VGG-16 most accurately predicts elevation for both modalities, we
use this model architecture for all subsequent experiments.
Experiment 2: Do ground truth elevation labels help improve lesion
diagnosis? For this experiment, we train lesion diagnosis models fDE (Eqn. 2)
that leverage ground truth elevation labels as auxiliary inputs and compare
their diagnosis performance to “vanilla” diagnosis models fD trained without
any elevation labels (Eqn. 1). To combine the elevation labels as inputs along
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Table 2: Leveraging inferred elevation labels (Eqn. 4), either “discrete” (fDÊmax)
or “probabilistic” (fDÊ) improves diagnosis performance over no elevation labels
(fD). Reported metrics are mean ± std. dev. over 3 repeated runs. We also report
statistical significance tests (McNemar’s mid-p test) and effect sizes (Cohen’s d).

Dataset Experiment
Metrics Statistical Tests

Bal. Acc. ↑ Accuracy ↑ Precision ↑ Recall ↑ F1-score ↑ AUROC ↑ p-value Cohen’s d

DermoFit [7]
fD 0.8145± 0.0170 0.9331± 0.0051 0.8121± 0.0194 0.8145± 0.0170 0.8103± 0.0149 0.8856± 0.0092 - -

fDÊ 0.8586± 0.0003 0.9480± 0.0003 0.8449± 0.0004 0.8586± 0.0003 0.8511± 0.0002 0.9125± 0.0001 9.87e-03 4.1348

fDÊmax 0.8541± 0.0009 0.9497± 0.0010 0.8466± 0.0019 0.8541± 0.0009 0.8500± 0.0015 0.9108± 0.0007 7.08e-03 3.8626

MSK [1]
fD 0.6004± 0.0010 0.8446± 0.0159 0.6156± 0.0302 0.6004± 0.0010 0.5843± 0.0091 0.7374± 0.0017 - -

fDÊ 0.6514± 0.0019 0.8833± 0.0018 0.7228± 0.0037 0.6514± 0.0019 0.6726± 0.0013 0.7747± 0.0014 4.04e-12 23.9526

fDÊmax 0.6352± 0.0047 0.8878± 0.0011 0.7169± 0.0210 0.6352± 0.0047 0.6638± 0.0021 0.7632± 0.0038 4.10e-11 8.7647

ISIC 2016 [23]
fD 0.7008± 0.0307 0.8100± 0.0474 0.7208± 0.0524 0.7008± 0.0307 0.6998± 0.0338 0.7008± 0.3070 - -

fDÊ 0.7344± 0.0124 0.8545± 0.0131 0.7615± 0.0022 0.7344± 0.0124 0.7467± 0.0059 0.7344± 0.0124 7.36e-02 0.1547

fDÊmax 0.7574± 0.0183 0.8391± 0.0165 0.7513± 0.0213 0.7574± 0.0183 0.7515± 0.0045 0.7574± 0.0183 8.75e-02 0.2603

ISIC 2017 [13]
fD 0.6926± 0.0207 0.8296± 0.0072 0.7303± 0.0160 0.6926± 0.0207 0.7060± 0.0133 0.6926± 0.0207 - -

fDÊ 0.7417± 0.0030 0.8500± 0.0060 0.7634± 0.0118 0.7417± 0.0030 0.7513± 0.0036 0.7417± 0.0030 3.06e-02 3.3198

fDÊmax 0.7555± 0.0040 0.8583± 0.0044 0.7776± 0.0095 0.7555± 0.0040 0.7644± 0.0018 0.7555± 0.0040 9.80e-03 4.2192

ISIC 2018 [12]
fD 0.7949± 0.0303 0.9450± 0.0055 0.7601± 0.0426 0.7949± 0.0303 0.7690± 0.0413 0.8808± 0.0190 - -

fDÊ 0.8481± 0.0016 0.9668± 0.0021 0.8314± 0.0064 0.8481± 0.0016 0.8390± 0.0043 0.9132± 0.0014 7.54e-03 2.4051

fDÊmax 0.8524± 0.0024 0.9641± 0.0032 0.8250± 0.0102 0.8524± 0.0024 0.8376± 0.0046 0.9143± 0.0012 3.52e-03 2.4885

with the lesion image (i.e., the ⊕ operator in Eqn. 2), we concatenate the one-hot
encoded elevation labels for each image to the output of VGG-16’s global-average
pooling layer, which is then passed to the final classification layer, thus adding
only a minimal number of parameters (NE × ND, i.e., the number of elevation
labels × the number of diagnosis classes). The training details (optimizer, loss,
number of epochs, learning rate) for both fDE and fD remain the same.

We observe that for clinical images, leveraging ground truth elevation labels
for diagnosis prediction (fDE) improves the performance [overall accuracy, AU-
ROC]: [0.8569, 0.6820] compared to diagnosis without elevation (fD): [0.8464,
0.6331]. A similar improvement is noted for dermoscopic images: the performance
with elevation labels: [0.9216, 0.8703] is an improvement over that of a “vanilla”
diagnosis model: [0.9137, 0.8431]. This improvement in AUROC of 4.89% and
2.72% for clinical and dermoscopic images, respectively, is consistent with find-
ings from previous works [26,3] that showed that using elevation labels along
with other metadata is beneficial for lesion diagnosis prediction.
Experiment 3: Can inferred elevation labels improve lesion diagnosis?
Having established that it is possible, with a reasonable accuracy, to predict
elevation labels from lesion images, and that elevation labels improve lesion di-
agnosis, the natural next question is if we can infer lesion elevation on datasets
that do not contain elevation labels, and if diagnosis prediction models trained
with these inferred elevation labels also improve diagnosis accuracy. Therefore,
given a trained elevation prediction model g, we infer elevation labels for all
images in 5 skin lesion datasets that do not have elevation labels: ISIC 2016,
ISIC 2017, ISIC 2018, MSK, and DermoFit. We note that there is a consider-
able domain shift between these skin lesion datasets [45], and therefore we use
modality specific elevation prediction models for inferring elevation labels, i.e.,
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the elevation prediction model g trained on derm7pt’s dermoscopic images is
used for the first 4 datasets, and g trained on derm7pt’s clinical images is used
for DermoFit. Next, for each dataset, we train three prediction models: (i) di-
agnosis prediction without any elevation labels (fD), (ii) diagnosis prediction
with probabilistic “soft” inferred elevation labels (fDÊ), and (iii) diagnosis pre-
diction with “discrete” inferred elevation labels (fDÊmax). Model training details
remain the same as Experiment 1, except the models are trained for longer (20
epochs for ISIC 2018 and 50 epochs for the other datasets), since these datasets
are larger than derm7pt. We report several classification metrics: balanced ac-
curacy, overall accuracy, precision, recall, F1-score, and AUROC, and train each
model thrice for robustness. In addition to these metrics, we also perform statis-
tical analysis: McNemar’s mid-p test [30,22] and effect size (Cohen’s d [14]) for
comparing {fDÊ , fDÊmax} AUROC predictions to those from fD.

Quantitative results in Table 2 show that leveraging estimated lesion eleva-
tion labels consistently improves diagnosis performance across all datasets: up to
6.29% and 2.69% improvements in AUROC for dermoscopic and clinical images,
respectively. Moreover, for all datasets except ISIC 2016, this improvement is sta-
tistically significant at p < 0.05. Similarly, Cohen’s d estimates indicate “huge”
effect sizes for these four datasets and “small” effect size for ISIC 2016 [41]. While
both “soft” and “discrete” estimates of the elevation label appear to improve diag-
nosis performance, interestingly, there does not appear to be a consistent pattern
of one of them outperforming the other. This is especially surprising since the
“soft” labels would convey the uncertainty associated with the elevation predic-
tion, and intuitively, they would be more informative. Nevertheless, we shelve
this observation for a future investigation.

4 Conclusion

In this work, we showed that it is possible to predict image-level lesion elevation
labels directly from 2D RGB skin lesion images with sufficient accuracy, and
that these estimated elevation labels do indeed help improve lesion diagnosis on
other datasets, improving AUROC by up to 6.29% and 2.69% on dermoscopic
and clinical images, respectively. The ability to predict lesion elevation from 2D
images, in addition to improving computer-aided diagnosis, offers the potential
to improve teledermatology consults by offering practitioners access to useful
estimates of clinical information otherwise unavailable in virtual consultations.
Our experiments with off-the-shelf monocular depth prediction models [39] from
natural computer vision failed to generate any usable depth maps (see Fig. SM1
in the Supplementary Material), and we postulate that this may be because of
the difference in scale of depth that these models are trained on (several orders of
magnitude larger than skin lesion elevation) as well as the scene anisotropy of the
images they are trained on (natural images generally have a depth anisotropy
where the lower parts of the image are closer to the camera plane, which is
typically not true for skin lesion images). Therefore, in future work, we would like
to explore the feasibility, accuracy, and utility of reconstructing dense elevation
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maps from single RGB images, specific to skin lesions. Another future direction
would be improving the elevation prediction accuracy, which may help reach the
upper bound of performance improvement achieved when using ground truth
elevation labels. Finally, we would also like to explore using multiple datasets
for training elevation labels’ prediction models to alleviate any potential biases
emanating from using a single dataset (derm7pt).
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