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Test-time Debiasing Literature
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Alignment with the Clinical Workflow

Test-time debiasing 

literature

• Relies on test batch statistics to update 
model weights.


• Fail when only a single image is 
available. 

• Fail when test distribution is 
heterogenous.

Method #Keypoints AUC

Baseline Test-time 
augmentation - 58,4

Literature T3A - 56,7

Literature Tent - 54,1

Literature NoiseCrop 50.176 72,7



Test-time Debiasing Literature
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Alignment with the Clinical Workflow

NoiseCrop

• Relies on full segmentation masks, 
which are hard to annotate.


• Make modifications in the pixel-
space, which might introduce 
unexpected features.



Test-time Selection (TTS)
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• Fast to annotate. 

• Avoid introducing distribution 
shifts by intervening on the feature 
space.


• Does not rely on test batch 
statistics.


• It’s cheap as there are no model 
updates.

Method #Keypoints AUC

Baseline Test-time 
augmentation - 58,4

Literature T3A - 56,7

Literature Tent - 54,1

Literature NoiseCrop 50.176 72,7

Ours TTS 40 75,0
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Evaluation Protocol



Artifacts providing spurious correlations
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Dark Corners Hair

Ruler Ink markings

Patches

• Mild correlations.


• Gaining robustness to artifacts will 
hardly impact any metric.


• We need to control/amplify the 
correlations.



Spurious Features vs. Generalization
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Spurious Features vs. Generalization
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Water Land

Train and Test sets present

opposite correlations!



Trap Sets - Controllable known biases
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Trap Sets - Controllable known biases
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Trap Sets - Controllable known biases
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Results



Effective throughout different training biases
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Effective even with a single pair of keypoints
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Visualization
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Visualization
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Flexible for different types of annotation
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Keypoints from Segmentation Mask

Keypoints on Artifacts



Limitations
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• How to adapt this solution to Vision Transformers?


• How to deal with biases uniformly spread across the image? (e.g., different 
acquisition devices.)



Takeaways

• Consider evaluating your models’ robustness on trap sets

• TTS improves robustness across different levels of bias

• TTS is effective even with a single pair of keypoints

• TTS is flexible to different types of annotations

28



Code, Data & Paper:
https://github.com/alceubissoto/skin-tts

Thank you! 
Alceu Bissoto  alceubissoto@ic.unicamp.br
Catarina Barata ana.c.fidalgo.barata@tecnico.ulisboa.pt

Eduardo Valle  dovalle@dca.fee.unicamp.br
Sandra Avila  sandra@ic.unicamp.br

ISIC Workshop @ MICCAI 2023

https://github.com/alceubissoto/skin-tts
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Spurious Features vs. Generalization
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• Uncontrolled biases (because not 
synthetic) 

• Specific bias source not annotated: 

• Image acquisition devices and 
protocol


• Artifacts


• …



Evaluation - Generalization and Spurious Correlations
Subgroup Evaluation
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Evaluation - Generalization and Spurious Correlations
Subgroup Evaluation
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Combalia et al. "Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge”, The Lancet, 2022
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