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Introduction
● Convolutional neural networks (CNNs) can be helpful decision support tools 

in healthcare.

● DL-based models can reach the dermatologist-level classification accuracies 
for skin diseases.

2
Images Source: https://blog.google/technology/health/ai-dermatology-preview-io-2021/
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Bias In Predictions
● Data-driven learning paradigm
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Fairness in Skin Image Analysis 
● Darker skin is under-represented in 

most publicly available data sets.

● Skin conditions appear differently across 
different skin types.

● The data imbalance across different skin 
types → racial biases in diagnosis
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Images Source: https://www.statnews.com/2020/07/21/dermatology-faces-reckoning-lack-of-
darker-skin-in-textbooks-journals-harms-patients-of-color/

Images Source: https://www.verywellhealth.com/psoriasis-on-dark-skin-5218057

https://www.statnews.com/2020/07/21/dermatology-faces-reckoning-lack-of-darker-skin-in-textbooks-journals-harms-patients-of-color/
https://www.verywellhealth.com/psoriasis-on-dark-skin-5218057


Contributions
● Color Invariant Representation learning for unbiased Classification of skin

Lesions (CIRCLe)

● Skin color transformations and skin color-invariant disease classification

● A new fairness metric: Normalized Accuracy Range → works with multiple
protected groups

● Comprehensive evaluation of our proposed method
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Problem
● Dataset 𝒟 = 𝑋, 𝑌, 𝑍

● 𝑀 classes ( 𝑌 = 𝑀)

● 𝑁 protected attributes ( 𝑍 = 𝑁)
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Train a classification model that:

§ Its prediction is invariant to the protected attribute 𝑧

§ Model’s classification performance is maximized.

𝑥: input

𝑦: label

𝑧: protected attribute



Approach
● Domain Invariant Representation Learning

• Fairness Definition

§ Statistical Parity: independence between the model’s
prediction and the protected attribute
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§ Learn data distributions that are independent of the underlying
skin types



Approach

1) Feature Extractor and Classifier

2) Regularization Network

• Skin Color Transformer
§ To learn transformations between skin type domains

• Domain Regularization Loss
§ To enforce the color invariant condition
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Feature Extractor and Classifier
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Skin Color Transformer 
● Learn the function 𝐺(𝑥, 𝑧, 𝑧′) that performs image-to-image

transformations between skin type domains using StarGAN.
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Skin Color Transformer 
● Learn the function 𝐺(𝑥, 𝑧, 𝑧′) that performs image-to-image

transformations between skin type domains using StarGAN.
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Domain Regularization Loss 
● Enforce the model to learn similar

representations for the original and
the synthetic image

● 𝓛𝒄𝒍𝒔: Classification loss

§ Cross Entropy Loss

● 𝓛𝒓𝒆𝒈: Regularization loss

§ Squared Error Distance
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Dataset
● Fitzpatrick17K Dataset [1]

● 16,577 clinical images

● 114 skin conditions 
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[1] Groh et al., “Evaluating deep neural networks trained on clinical images in dermatology with the Fitzpatrick 17k dataset”, CVPR (2021).



Dataset
● Fitzpatrick17K Dataset [1]

● 16,577 clinical images

● 114 skin conditions 

● Each image has Fitzpatrick skin type (FST) label
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[1] Groh et al., “Evaluating deep neural networks trained on clinical images in dermatology with the Fitzpatrick 17k dataset”, CVPR (2021).



Fitzpatrick17K dataset
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Metrics 
● Accurate and fair skin condition classifier

● Classification performance 
• Recall, F1-score, Accuracy
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Metrics 
● Accurate and fair skin condition classifier

● Fairness 
• Equal Opportunity Difference (EOD)

§ Difference in TPR rates for the two protected groups

§ Light (FSTs 1, 2, and 3) versus dark (FSTs 4, 5, and 6)
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EOD = 𝑇𝑃𝑅/01'+2 − 𝑇𝑃𝑅/0(3-4%



Metrics 
● Accurate and fair skin condition classifier

● Fairness 
• Normalized Accuracy Range (NAR)

§ Assess the accuracy (ACC) disparities across all the six skin types
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NAR =
𝐴𝐶𝐶5'6 − 𝐴𝐶𝐶537

𝑚𝑒𝑎𝑛(𝐴𝐶𝐶)

𝐴𝐶𝐶'() ≈ 𝐴𝐶𝐶'*+ ⟹ 𝑁𝐴𝑅 ≈ 0



Models 
● Baseline [1]

● Improved Baseline (Ours)

• Ablation study → No regularization loss 𝓛𝒓𝒆𝒈
● CIRCLe (Ours) 

● Multiple Backbones

• Covering a wide range of CNN architecture families
• Ablation study for all models
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[1] Groh et al., “Evaluating deep neural networks trained on clinical images in dermatology with the Fitzpatrick 17k dataset”, CVPR (2021).



Results
● Classification and Fairness Performance
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• Improved Baseline method recognizably outperforms the baseline method in accuracy and
fairness.

Note: values in parenthesis are std. dev. of the results for 5 different random seeds for data splitting



Results
● Classification and Fairness Performance
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• New state-of-the-art performance on the Fitzpatrick17K dataset for the task of classifying the
114 skin conditions

Note: values in parenthesis are std. dev. of the results for 5 different random seeds for data splitting



Results
● Different Backbones
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Results
● Different Backbones
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Results
● Domain Adaptation Performance
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• “Two-to-other” experiment:  train the model on all the images from two FST domains 
and test it on all the other FST domains.



Results
● Classification Performance Relation with Training Size
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• For each FST group, we gradually
increase its number of images in the
training set, and report the model’s
overall accuracy on the test set.

• With very limited or no representation
of a skin type, CIRCLe can still
perform well overall.



Conclusion

● We proposed CIRCLe, a method based on domain invariant representation 
learning, for mitigating skin type bias in clinical image classification.

● CIRCLe sets a new state-of-the-art performance on the classification of the 
114 skin conditions in the Fitzpatrick17K dataset.

● We also proposed a new fairness metric Normalized Accuracy Range for 
assessing fairness of classification in the presence of multiple protected 
groups, and showed that CIRCLe improves fairness of classification.
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Thank You!

Code:
https://github.com/arezou-pakzad/CIRCLe

Arezou Pakzad.  arezou_pakzad@sfu.ca
Kumar Abhishek.   kabhishe@sfu.ca
Ghassan Hamarneh.   hamarneh@sfu.ca

Website: www.medicalimageanalysis.com
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