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Abstract

Self-supervised pretraining followed by supervised fine-
tuning has seen success in image recognition, especially
when labeled examples are scarce, but has received lim-
ited attention in medical image analysis. This paper stud-
ies the effectiveness of self-supervised learning as a pre-

trainine strateev for medical imaee classification. We con-
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ABSTRACT

Deep neural networks (DNNs) are the standard approach
for image classification. However, they require a large
amount of data and corresponding annotations. Collecting
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in medical image analysis [6]. Additionally, the color distri-
bution of natural images is also very different from the medi-
cal ones [7], which can result in models that have difficulties
in generalizing to the other data [6].
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stract. Transfer learning from supervised ImageNet models has been
juently used in medical image analysis. Yet, no large-scale evalua-
1 has been conducted to benchmark the efficacy of newly-developed
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What were they missing?
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Our Evaluation Protocol
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Our pipelines

Supervised training on
labeled natural images

Contrastive learning pre-training on labeled or unlabeled
skin-lesion images

\ SSL »SCL »FT <) SSL— UCL — FT

Supervised fine-tuning on labeled skin images
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Contrastive Learning

14



Contrastive Learning
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Unsupervised Contrastive Learning (UCL) -> Image augmentations to create positive views

Supervised Contrastive Learning (SCL) -> Label class to create positive views 15



Training Data

Full-data evaluation

100 %
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Low-data evaluat
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Low-data evaluation

Training Data
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Out-of-Distribution Evaluation
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Full data and out-of-distribution performance
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Full data and out-of-distribution performance
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Low-data and out-of-distribution performance
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Low-data and out-of-distribution performance

AUC
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Qualitative Analysis
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Conclusion

 The advantage of self-supervised pipelines was particularly positive in

the low-data scenarios
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Conclusion

 Models pre-trained in a self-supervised manner felt easier to optimize
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Conclusion

 Understanding what circumstances make self-supervised competitive

from a theoretical perspective is a promising research area.
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Limitations

 Explored just one training dataset and model architecture
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Limitations

 Explored just one training dataset and model architecture

* Extensive exploration is necessary to evaluate if self-supervised is reinforcing

data biases
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Code and data available on Github!
https://github.com/VirtualSpaceman/ssl-skin-lesions
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