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covid. None of them helped.

Some have been used in hospitals, despite not being properly tested. But the
pandemic could help make medical Al better.

By Will Douglas Heaven July 30, 2021

https://www.technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/
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The problem of dataset bias

Diversity Shift orrelation Shift Subpopulation Shift

Clinical vs. Dermatoscopical Artifacts Underrepresented Skin Colors




De(Constructing) Bias

ISIC Workshop @ CVPR 2019

Abstract

Melanoma is the deadliest form of skin cancer. Au-
tomated skin lesion analysis plays an important role for
early detection. Nowadays, the ISIC Archive and the At-
las of Dermoscopy dataset are the most employed skin le-
sion sources to benchmark deep-learning based tools. How-
ever, all datasets contain biases, often unintentional, due to
how they were acquired and annotated. Those biases dis-
tort the performance of machine-learning models, creating
spurious correlations that the models can unfairly exploit,
or, contrarily destroying cogent correlations that the mod-
els could learn. In this paper, we propose a set of exper-

iments that reveal both types of biases, positive and neg-
ative. in existine skin lesion datasets. QOur results show
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Deep learning methods are the state-of-the-art «
cancer classification [11, 13]. That task is challeng;
to the vast visual variability of skin lesions, and the ¢
of the cues that differentiate benign and malignan
To compound the difficulty, datasets to train the data-
models are small, when compared with general-purp
age datasets (e.g., ImageNet, MSCOCO, LabelMe).

Due to the scarcity of good-quality, annotated skii
images, two datasets dominate research on automated skin
lesion analysis: the Interactive Atlas of Dermoscopy [5] and
the ISIC Archive [1]. The Atlas is an educational medical
resource, with many standardized metadata over the cases it
contains, while the ISIC Archive is a much larger, but also
less controlled dataset, with images of different sources.
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(b) Only Skin images

(c) Bbox images

(d) Bbox70 images
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Benchmarks
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Robustnhess
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Debiasing on Skin Lesion Analysis Models
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Debiasing Skin Lesion Datasets and Models? Not So Fast
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Abstract

Data-driven models are now deployed in a plethora of
real-world applications — including automated diagnosis
— but models learned from data risk learning biases from
that same data. When models learn spurious correlations
not found in real-world situations, their deployment for crit-
ical tasks, such as medical decisions, can be catastrophic.
In this work we address this issue for skin-lesion classifica-
tion models, with two objectives: finding out what are the
spurious correlations exploited by biased networks, and de-
biasing the models by removing such spurious correlations
from them. We perform a systematic integrated analysis of
7 visual artifacts (which are possible sources of biases ex-
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predictions made by them.

formances for deep neural networks trained with ima
where the lesions appear occluded by large black bound
boxes. The performances were comparable to those of 1
works trained with additional dermoscopic attributes. "
networks were unable to exploit clinically-meaningful in-
formation in the form of dermoscopic features, neglecting
those in their decision process.

Those results motivated this work, whose objective is
twofold: on the one hand, we attempt to finding out what
are the extraneous, spurious correlations exploited by bi-
ased networks, on the other hand, we attempt to apply tech-
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Domain Generalization
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Abstract

Data-driven models are now deployed in a plethora of
real-world applications — including automated diagnosis
— but models learned from data risk learning biases from
that same data. When models learn spurious correlations
not found in real-world situations, their deployment for crit-
ical tasks, such as medical decisions, can be catastrophic.
In this work we address this issue for skin-lesion classifica-
tion models, with two objectives: finding out what are the
spurious correlations exploited by biased networks, and de-
biasing the models by removing such spurious correlations
from them. We perform a systematic integrated analysis of
7 visual artifacts (which are possible sources of biases ex-
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predictions made by them.

Bissoto et al. [ /] investigated bias for skin-lesion datasets
and found troubling signs, showing shockingly high per-
formances for deep neural networks trained with images
where the lesions appear occluded by large black bounding
boxes. The performances were comparable to those of net-
works trained with additional dermoscopic attributes. The
networks were unable to exploit clinically-meaningful in-
formation in the form of dermoscopic features, neglecting
those in their decision process.

Those results motivated this work, whose objective is
twofold: on the one hand, we attempt to finding out what
are the extraneous, spurious correlations exploited by bi-
ased networks, on the other hand, we attempt to apply tech-
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Abstract. Deep Learning failure cases are abundant, particularly in the
medical area. Recent studies in out-of-distribution generalization have
advanced considerably on well-controlled synthetic datasets, but they do
not represent medical imaging contexts. We propose a pipeline that relies
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Debiasing Pipeline

Overview
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Evaluation

A: Trap sets
B: Artifact-based environments
C: NoiseCrop
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Trap Sets
Debiasing Pipeline

- Control and amplify the level of bias during training.
- Creating challenging test sets with opposite correlations.

Raw Data e

. Melanoma 13
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Artifact-based environments

Debiasing pipeline

HAM10000 BCN20000
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Classical Learning Method
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Empirical Risk Minimization (ERM): Minimize the empirical
risk among all samples (classical learning method)

20

"Principles of risk minimization for learning theory”, Vapnik et al. NeurIPS 1991
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Distributionally Robust Optimization (DRO): Minimize the
maximum risk across environments

21

"Distributionally Robust Neural Networks”, Sagawa et al. ICLR 2020
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ldeal Environments

Environments should differ in single or few aspects.

 Demographics

|

* |mage acquisition devices

e Artifact distribution

e Artifact characteristics

----.
- ll

e Class distribution

Bissoto et al., "Artifact-based domain generalization of skin lesion models"”, ISIC Workshop @ ECCV 2022 22



R

"Separate data into groups according to the presence of artifacts and its labels”
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Artifact-based environments

Debiasing pipeline

Bissoto et al., "Artifact-based domain generalization of skin lesion models"”, ISIC Workshop @ ECCV 2022 23
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Artifact-based environments

Debiasing pipeline
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Artifact-based environments

Debiasing pipeline
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Debiasing Pipeline

Overview
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Evaluation

A: Trap sets
B: Artifact-based environments
C: NoiseCrop
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NoiseCrop

Debiasing pipeline

"Remove confounders from t€St samples"

Bissoto et al., "Artifact-based domain generalization of skin lesion models”, ISIC Workshop @ ECCV 2022 27
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Results
Trap Sets on ISIC 2019
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Results
Trap Sets on ISIC 2019
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Results
Trap Sets on ISIC 2019

Training procedure - ERM =% GroupDRO (Ours) =% Full Pipeline (Ours)
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Out-of-Distribution Results

Performance (AUC)
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Out-of-Distribution Results
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Limitations

* We still need extra annotations (in form of artifacts annotations and
segmentation masks) to perform our debiasing pipeline.

Dark corner| Ruler |Ink Markings
ISIC_0000001 X v
ISIC_0000002 v X
ISIC_0000003 x x
ISIC_0000004 v X
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Limitations

* Debiasing with respect to artifacts may not translate to out-of-distribution
performance

 Performance in out-of-distribution depends on the confounders available
on test

Bissoto et al., "Artifact-based domain generalization of skin lesion models"”, ISIC Workshop @ ECCV 2022 30
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Takeaways

* |s debiasing research useful only when biases on train are very high?

Bissoto et al., "Artifact-based domain generalization of skin lesion models"”, ISIC Workshop @ ECCV 2022 37
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Takeaways

* |s debiasing research useful only when biases on train are very high?

"Broadly, our analysis indicates that internet-
trained models have Internet-scale biases."

Brown et al., "Language Models are Few-Shot Learners”, NeurlPS 2020

Bissoto et al., "Artifact-based domain generalization of skin lesion models"”, ISIC Workshop @ ECCV 2022 38
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Takeaways

* We can improve robustness to KNOWN biases through both training and test
debiasing

 We must continue handling different bias problems that may arise in the
clinical scenario

Bissoto et al., "Artifact-based domain generalization of skin lesion models"”, ISIC Workshop @ ECCV 2022 39



Code, Data & Paper:

https://github.com/alceubissoto/artifact-generalization-skin
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