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Abstract. Dermoscopic images are often contaminated by artifacts in-
cluding clinical pen markings, immersion fluid air bubbles, dark corners,
and most importantly hair, which makes interpreting them more chal-
lenging for clinicians and computer-aided diagnostic algorithms. Hence,
automated artifact recognition and inpainting systems have the potential
to aid the clinical workflow as well as serve as an preprocessing step in the
automated classification of dermoscopic images. In this paper, we share
the first release of a public dermoscopic image dataset with hair artifacts
which can be accessed here https://skin-hairdataset.github.io/SHD/. The
Skin Hair dataset contains over 252 dermoscopic images including arti-
ficial hair and will be expanded over time. Furthermore, we present the
primary results of applying machine learning algorithms and GAN based
architectures to the hair inpainting problem in dermoscopic images. We
envision that these results will serve as a benchmark for researchers who
might work on the hair detection and reconstruction tasks with this
dataset in the future. In this work, we present a skin lesion image dataset
based on the ISIC dataset containing dermoscopic images, images con-
taining artificial hairs and the corresponding ground-truth masks. Fur-
thermore, we use four hair inpainting methods including Navier-Stokes,
Telea, Hair SinGAN and R-MNet architectures which we evaluate us-
ing image quality assessment metrics MSE, PSNR, UQI and SSIM. The
R-MNet architecture achieved the highest SSIM score of 0.960.

Keywords: Melanoma, dermoscopy, hair inpainting, artifacts, hair re-
moval, image quality, GAN
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1 Introduction

Removal of artifacts from dermoscopic images is a necessary step in classify-
ing skin lesions since artifacts can lead to severe misinterpretation of the global
and local structures both for clinical and computer-aided diagnosis. Automated
analysis of dermoscopic images is a challenge task [12], with one of the main dif-
ficulties being the existence of a variety of artifacts including clinical pen mark-
ings, rulers, immersion fluid air bubbles, size-reference stickers, dark corners,
and most commonly - hair (see Fig. 1). These artifacts are strikingly di↵erent
when compared to the rest of the image in both color, shape, and features. As
the unique patterns in human skin are often very subtle, those unwanted arti-
facts often draw the attention of the deep neural network, leading to a falsified
diagnosis. Furthermore, the presence of hair may obscure and distort important
areas that could determine the final classification.

a) b) c)

d) e) f)

Fig. 1. Sample images from the ISIC database with the following artifacts: a) clinical
pen markings, b) rulers, c) immersion fluid air bubbles, d) lens measurement reference,
e) dark corners, e) hair

One of the advantages of deep learning methods is the relative lack of pre-
processing needed. In most computer vision tasks, including segmentation and
classification which are mostly based on CNNs, datasets without any prepara-
tion or preprocessing are directly passed to the backbone of the CNN network in
order to learn the features. However, prior research [28–30,38] indicates that, in
the case of dermoscopic image analysis, most of the algorithms perform better
when the artifacts are removed or inpainted.

The presence of hair in dermoscopic images poses a significant challenge
as they may occlude some of the information of the lesion such as its bound-
ary and texture. Hence, the removal of hair is an important preprocessing step
which, due to its diverse appearances, causes significant problems. We propose
a dermoscopic image dataset which gives the possibility to work in the area
of removing artifacts and can be used as a benchmark for researchers work-
ing on hair detection and inpainting. The dataset uses images from the ISIC
datasets [14–16, 18, 31, 41] and consists of dermoscopic images with artificially
added hairs as well as corresponding binary masks.
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Based on the proposed dataset, which consist of 252 dermoscopic images, we
have trained and evaluated two traditional inpainting methods, Telea [39] and
Navier–Stokes [7]). In addition deep learning based methods Hair SinGAN and
R-MNet have been proposed. The hair inpainting algorithms have been evaluate
using image quality assessment metrics MSE, PSNR, UQI and SSIM. The R-
MNet architecture achieved the highest SSIM score 0.960.

The main novelty of this paper can be summarised as follows:

– We introduce a benchmark dataset with consists of 252 cases including: raw
dermoscopic images (reference images), corresponding images with overlay-
ing artificial hairs and binary masks which serve as ground-truth.

– We use state-of-the-art Reverse-Masking networks for the inpainting of hairs
in dermoscopic images which applies changes only to the target region.

– We propose the Hair SinGAN architecture, based on the work of [32] et al.
which is trained on a single image.

– We statistically evaluate our hair inpainting methods using image quality
assessment metrics MSE, PSNR, UQI and SSIM and suggest the R-MNet
architecture to serve as the pre-processing method for dermoscopic images.

2 Related Work

Research focusing on automated skin lesion analysis often observe the occurrence
of artifacts, but do not discuss how to circumvent the possible negative e↵ects
of their presence [23], or do not investigate the e↵ects of their removal [45].
Early attempts to remove hair from skin lesion images were conducted by Lee et
al. [25] who created the Dullrazor software. They used grayscale morphological
closing to perform hair segmentation and bilinear interpolation to remove hairs
from melanoma images. However, this approach is limited in that it is only
e↵ective in removing thick dark hairs from skin lesion images. This method would
later be improved by [24] et al. who developed the E-shaver application which
used an edge detector with color averaging making it more e↵ective on di↵erent
types of hairs. However, in their experiments, they tested on only 50 images.
In the same year, Fiorese et al. [17] proposed the VirtualShave tool which used
partial di↵erential equation inpainting, and claimed performance comparable to
human operators removing hair manually, with resulting images being almost
indistinguishable from hair-free skin.

Later, Xie et al. [43] used a top-hat operator to segment and anisotropic
di↵usion to remove hair from skin lesion images. As per previous works, this
study was not able to handle all types of hair. Additionally, this method was
only tested on a very small dataset of 40 just images. Limited dataset testing is a
common theme in many prior research projects in this domain [1,10,17,20,37,40].

Maglogiannis [27] et al. used combinations of Bottom-hat, Laplacian, and So-
bel methods to identify and remove hair from dermoscopic images. They observed
that the Laplacian of Gaussian and Sobel edge detection methods combined, to-
gether with a 3x3 wiener noise reduction filter, provided the best results.
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Salido et al. [33] performed hair removal on dermoscopic images using mor-
phological bottom-hat filtering with erosion and dilation by morphological open-
ing. Inpainting was completed using a nonlinear model based on curvature-driven
di↵usions for nontexture images, originally proposed by [13].

Bardou et al. [6] used a variational autoencoder to remove hair from dermo-
scopic skin lesion images in the HAM10000 dataset without the need for paired
samples. The encoder uses dermoscope images as input and builds a latent dis-
tribution which ignores hair as noise, while the decoder reconstructs a hair-free
image. Their results show high quality inpainting, the reconstructed images are
not identical to the input images as they look blurry and often distort the fea-
tures of lesions.

In 2019, Talavera et al. [38] identified that there are currently no methods
to benchmark the e↵ectiveness of hair removal algorithms. They extracted 13
hairless images from the PH2 dataset and overlaid artificial hairs to test the
e↵ectiveness of 6 state-of-the-art algorithms and compared the results.

Li et al. [26] trained a U-Net with ISIC data to obtain hair masks, and propose
an inpainting architecture comprising a gated convolution and SN-PatchGAN.
They categorised hair in ISIC images as: thin; overlapping; faded; of similar con-
trast or colour to the underlying skin; and obscuring lesions. They observe that
traditional hard-coded threshold-based hair removal methods are ine↵ective, and
can result in over-removal which can cause loss of important lesion details, or
under-removal where the hair cannot be removed e↵ectively. They also propose
an evaluation method (intra-structural similarity) to analyse the e↵ect of hair
removal based on a single dermoscopic image.

Song et al. [36] proposed a novel hair extraction method which utilised max-
imum variance fuzzy clustering, with a Criminisi algorithm used for repairing
image regions where hair had been removed. This method is capable of fast
hair extraction and segmentation with reduced computational complexity. The
implementation does not require extensive learning based on a large number of
parameters and training images, resulting in high execution e�ciency.

More recently, Nauta et al. [29] found that CNN classifiers partly based
predictions of benign images on the presence of colour calibration patches placed
onto the skin during examinations. By artificially inserting colour calibration
patches into malignant images, they showed that shortcut learning results in a
significant increase in misdiagnoses. This work indicates that other artifact types
may present similar issues.

We surveyed 38 state-of-the-art papers from the field of computer aided di-
agnosis in skin lesion tasks and checked if the authors mention any techniques
for hair removal. Although most of the papers describe the di�culties of dealing
with artifacts they often state that it is an issue for computer vision process-
ing methods. The deep learning methodology hasn’t been explored in this area,
yet. Only in 7 papers researchers indicated the artifact removal or enhancement
stage [2–5,8, 9, 44].
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3 Skin Hair Dataset

a) b) c)

Fig. 2. Illustration of the dataset creation process: (a) clear image without hair, (b)
hair extracted from di↵erent image placed over the clear image, and (c) ground truth
reference mask.

The main issue in the process of detection, reconstruction and assessment of
artifacts is mostly due to the lack of properly prepared datasets which do not
include ground truth masks and reference images. Due to the artifact removal
evaluation process we propose a novel Skin Hair dataset that includes the raw
dermoscopic images, images containing artificial hairs as well as ground-truth
masks for evaluation purpose. This dataset is created by taking raw dermo-
scopic images without hair artifacts from the ISIC dataset that serve as a refer-
ence ground-truth image and for applying manually extracted hairs from other
dermoscopic images from the ISIC dataset. The dataset can be obtained from
the following repository: https://skin-hairdataset.github.io/SHD/.

a) b) c)

Fig. 3. Illustration of three types of hair colour: (a) dark, (b) brown, and (c) light.

Raw dermoscopic images without hair, as well as hair patterns, were taken
from the ISIC database [21], which is the largest publicly available dataset con-
taining dermoscopic images with metadata. To successfully determine the ef-
fectiveness of the hair removal methods, we use the balanced ISIC dataset as
presented in [11]. Pewton and Yap [30] annotated the dataset for numerous ar-
tifacts, including hair. Based on the provided information we divide the dataset
into two separate parts containing hair and without hair, respectively. Due to
the very large variety and complexity of the hair patterns, we decided to transfer
the hair from other dermoscopic images, which allowed us to maintain their nat-
ural appearance (Fig. 2). The process of creating a dermoscopic image with hairs
consists of the following steps: 1) Choosing a raw image without artifacts from
the ISIC dataset, 2) Choosing an image including hairs from the ISIC dataset,
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3) Manually marking the hair areas using Photoshop quick mask with alpha
channel, soft, round brush with full opacity and size adapted to the size of the
marked hair, 4) Cutting out the hair to a new transparent layer and clearing
any additional areas of skin visible on this layer, 5) Applying the hair mask to
the dermatoscopic image.

The extracted hair patterns have been augmented using the following meth-
ods: 1) randomly moving and rotating the mask, 2) modification of the selection
with small, medium and large number of hairs; 3) changing the color of the
hair into three main categories (light, brown, and dark - defined based on the
analysis of the dataset) using brightness, contrast tool and color blending mode;
4) randomly applying di↵erent masks onto di↵erent clean images, without hair;
and 5) for each modified pattern, a reference mask was created using a threshold
tool.

a) b) c)

Fig. 4. Illustrations of three types of hair size: (a) small, (b) medium, and (c) large.

The method is repeated for three di↵erent hair colours - dark, brown and
light as presented in Fig. 3. In total, we used 77 non-hair images as the basis
for applying di↵erent hair configurations. We augmented the extracted hair by
changing the size, amount and colour. In total 252 images were generated with 84
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unique masks to cover the di↵erent hair types. The Skin Hair dataset contains:
35 images with small density (each in three colours - light, brown and dark),
27 images with medium density (each in three colours - light, brown and dark)
and 22 images with high density (each in three colours - light, brown and dark).
The process of mask extraction and hair addition was performed using Adobe
Photoshop 23.4.1.

4 E↵ective hair inpainting algorithms

As the artifact removal process is an obligatory step in image preprocessing we
have considered 5 di↵erent inpainting techniques in order to compare the tra-
ditional computer vision inpainting methods including Navier-Stokes and Telea
with two state-of-the art deep learning techniques - SinGAN and R-MNet.

4.1 Navier-Stokes

Bertalmio et. al. found an analogy between the image inpainting problem and the
stream function in a two-dimensional (2D) incompressible fluid. An approximate
solution to the inpainting problem is obtained by numerically approximating the
steady state solution of the 2D NSE (Navier-Stokes Equations) vorticity trans-
port equation, and simultaneously solving the Poisson equation between the
vorticity and stream function, in the region to be inpainted [7]. Image intensity
is changed via a ‘stream function’. Isophote lines (lines of equal brightness in-
tensity) are propagated along the edges from the outside into the region that
is being inpainted. Instead of using the vorticity of the fluid, the method uses
the laplacian of the intensity. The direction of the flow is a vector field defined
by the stream function. The algorithm continues the isophote lines and matches
gradient vectors at the boundary of the inpainting region [7]. Results of the
Navier-Stokes algorithm are presented in Fig. 5.

a) b) c)

Fig. 5. Illustration of the e↵ects of the Navier-Stokes inpainting method: a) original
dermoscopic image, b) dermoscopic image containing artificial hair, and c) Navier-
Stokes inpainting outcomes.

4.2 Telea

Telea [39], proposed an inpainting algorithm using a Fast Marching Method
(FMM). This method is considered faster and less complex to compute than
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other typical inpainting methods [39]. The algorithm uses known regions to
grow inpainted regions into the target regions, and is enforced by the use of
the FMM. The Fast Marching Method itself is a numerical technique used for
solving a boundary value problem [34]. Here it is used to ensure that pixels
closer to the known neighbours are inpainted before pixels with unknown neigh-
bours. It performs a similar role to a distance transform but has an advantage
of maintaining narrow bands - a boundary between known and unknown areas.
The algorithm defines three types of pixels: BAND: the pixel belongs to the
narrow band, KNOWN : the pixel is outside the inpainting boundary (known)
and INSIDE: the pixel is inside the inpainting boundary (unknown). For each
pixel, there are two values - T (distance to the edge) and I (grey-level intensity).
The algorithm works in the following steps: 1) extract the BAND point with
the smallest T , 2) march the boundary inward by adding new points to it, 3)
perform the inpainting: iterate over the KNOWN points in the neighborhood
of the current point (i, j) and compute I(i, j) and the image gradient gradient is
estimated by central di↵erences, 4) propagates the value T of point (i, j) to its
neighbors (k, l) by solving the finite di↵erence discretization problem, 5) inserts
(k, l) with its new T in the heap. Results of the Telea algorithm are presented
in Figure 6.

a) b) c)

Fig. 6. Illustration of the e↵ects of the Telea inpainting algorithm: a) original dermo-
scopic image, b) dermoscopic image containing artificial hair, and c) Telea inpainting
outcomes.

4.3 Hair SinGAN architecture

While most of deep learning models require large numbers of examples in order
to be trained e↵ectively, we tried to design an approach which works on as few
examples as possible. In practice, this is technically di�cult as the dataset needs
to represent the underlying distribution, and the more examples the dataset con-
sists of, the more accurate the representation is. However, considering a single
image as a dataset itself, it can represent its own distribution. The general idea
behind our approach is to analyze parts of an image which are not hidden behind
artifacts that we want to remove, train the model on those parts, and then use
the model in order to reconstruct areas hidden behind (Fig. 7). The algorithm
starts with dividing the image into a set of smaller training rectangular regions.
Those areas where the GT image mask shows no hair are training regions and a
the rest of the image becomes a reconstruction region (see steps T1 and R1 on
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Fig. 7). Then, from the proposed image parts, multiple rectangles are extracted,
which constitute inputs to a model based on Generative Adversarial Networks
(T2 and R2). Additionally, in training phase (T4), those inputs are enriched with
artificial artifacts (T3). On the other hand, original snippets serves as model’s
reconstruction goal (network output). After the training process is finished, snip-
pets prepared from the reconstruction region (R2) are then fed into the network
(R3). The outputs, with the hair removed, replaces fragments on the original
image.

Fig. 7. SinGAN [35] algorithm pipeline, consisting of two independent branches. The
T branch represents a model training process on artificially generated examples. Such
a model is then used for inpainting on fragments covered with artifacts (showed on the
branch R). In the final step, reconstructed fragments are replaced with those on the
original image.

Given that this method requires only a single image for reconstruction, the
results represent a valid alternative compared to prior traditional methods, es-
pecially in the case of poor quality datasets (Table 1). The main drawback of
the algorithm is the ratio between the training area and the reconstruction area.
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When the ratio is below 1, reconstruction starts to disclose insu�cient dataset
problem.

4.4 R-MNet method

For hair inpainting we employ the use of Reverse-Masking networks [22]. The
advantage of this method is that it is similar to the traditional methods and
the GAN focuses only on target regions, making no change to the surrounding
regions. The network does this by importing the mask and then feeding into the
network as in traditional structures, as illustrated in Fig. 8.

Fig. 8. Illustration of R-MNet [22] on skin lesions inpainting.

The mask is applied internally, using matrix operations which inverse the
mask which is used to reapply the undamaged areas to the inpainted images.
The network then uses surrounding regions to inpaint the selected areas, as with
traditional prior techniques. The network uses an encoder-decoder structure, to
focus on non-damaged regions, and reconstructs the inpainted image during the
decode stage. However, owing to the network structure a custom loss function
is used which focuses on damaged regions to assess reconstruction. The decoder
uses a series of 5 ⇥ 5 convolutions of increasing filter depth. Each convolution
is followed by a LeakyReLU activation, using an alpha of 0.2, a dropout of 0.5,
followed by a max-pooling layer. The LeakyReLU is used to prevent the non
activation of the neurons, as instead of the function being zero when x < 0, the
leakyReLU will return some small negative number instead. The LeakyReLU is
used during the encoding stage, allowing a diverse set of features to be captured,
the dropout aids the network to deal with less features and the pooling focuses
the network onto the core features. The decoder follows a series of up-sampling
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layers, with transposed convolutions, standard ReLU and batch normalisation,
with a final tanh layer. The encoder mixes both 2D up-sampling and transpose
convs to resoles the feature back to the original size while having some convolu-
tional functions, the batch normalisation aids the network to generalise during
training. To train our network we used the generated hair masks on the hairless
images to ensure the network learned skin features only. Owing to this the net-
work requires hairless examples as ground truth to ensure the system only learns
to inpaint skin and the skin lesions. When training using R-MNet the network
manages to inpaint the hair masks, as illustrated in Fig. 9 which shows that the
network manages to successfully inpaint skin regions and parts of the lesions
However, limitations, due to the limited umber of input images, are apparent.

a) b) c)

Fig. 9. Illustration of the visual appearances on skin lesions: a) original dermoscopic
image, b) dermoscopic image containing artificial hair, and c) R-MNet inpainted image.

5 Result analysis

Image Quality Assessment (IQA) is considered as a characteristic property of
an image and describes the degradation of the perceived image. Quality of an
image can be described technically with statistical metrics as well as objectively
to indicate the deviation from the ideal or reference model. In our case the ideal
is an image without the hair mask. There are several techniques and metrics
available that can be used for objective image quality assessment. Here, we use
the full-Reference (FR) approach, as we assess the quality of a test image in
comparison with a reference image which is considered to be of perfect quality.
We take advantage of image quality techniques to compare the outcomes of our
proposed inpainting algorithms for the hair regions such as MSE (Mean Square
Error), PSNR (Peak Signal to Noise Ratio), SSIM (Structured Similarity Index
Measure), and UQI (Universal Quality Index).

MSE is the most common estimator of image quality measurement and refers
to the second moment of error. The error is the di↵erence between the estimator
and the estimated outcome. It is a function of risk, considering the expected value
of the squared error loss or quadratic loss, with a bias towards large deviation
from the ground truth. MSE is a full reference metric with values closer to zero
indicating higher similarity. MSE between two images such as I(x, y) andK(x, y)
is defined as [42]:
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MSE =
1
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[I(i, j)�K(i, j)]2. (1)

PSNR is used to calculate the ratio between the maximum possible signal
power and the power of the distorting noise which a↵ects the quality of its
representation. This ratio between two images is computed in decibel form and is
usually calculated as the logarithm term of decibel scale where the dynamic range
varies between the largest and the smallest possible values which are changeable
by their quality. The PSNR is defined as [19]:

PSNR = 10 · log10
✓
MAX 2

I

MSE

◆
(2)

SSIM is a perception based model where image degradation is considered as
the change of perception in structural information [46]. It also takes into con-
sideration other important perception based elements such as luminance mask-
ing and contrast masking. The di↵erence of this method when compared to
other techniques, such as MSE or PSNR, is that the other approaches estimate
absolute errors. Structural information is the idea that the pixels have strong
inter-dependencies especially when they are spatially close. The SSIM index is
calculated on various windows of an image. The measure between two windows
x and y of common size N ⇥N is defined as [46]:

SSIM(x, y) =
(2µxµy + c1)(2�xy + c2)

(µ2
x + µ2

y + c1)(�2
x + �2

y + c2)
(3)

where L is the dynamic range of the pixel-values (typically this is 2#bits per pixel�
1, k1 = 0.01 and k2 = 0.03 by default).

UQI was the predecessor of SSIM and evaluates quality of an image using
loss of correlation, luminance distortion, and contrast distortion. UQI is global
rather than being local or specially intended to the images being tested or on
the individual observers. The quality index is defined as:

Q =
4�xyxy

(�2
x + �2

y) + ((x)2 + (y)2)
(4)

where, x and y are the mean values of the original and distorted images respec-
tively. �2

x and �
2
y are the variances. �xy is the covariance. The range of UQI is

[�1, 1] where 1 is achieved when the two images are identical.
Due to the R-MNet algorithm which requires the training set the proposed

Skin Hair dataset has been divided into training and testing sets including 170
and 82 images respectively. After inpainting (reconstructing) skin lesion images,
we estimated the quality by using MSE, PSNR, UQI and SSIM metrics. The
summary of quality matrices calculations is shown in Table 1. From this table,
we observe that all metrics have given almost consistent results. From a rep-
resentation perspective, SSIM and UQI is normalized, but MSE and PSNR are
not. Therefore, SSIM and UQI can be treated as more understandable than MSE
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Table 1. Summary of the IQA metrics including MSE, PSNR, SSIM and UQI for
hair inpaining methods including Navier-Stokes, Telea, Hair SinGAN and R-MNet. †
= higher value is better; ] = lower value is better.

Hair inpainting method MSE ] PSNR † SSIM † UQI †

Navier-Stokes 7.380 40.305 0.959 0.9984

Telea 7.114 40.558 0.959 0.9984

Hair SinGAN 53.735 34.489 0.881 0.9976

R-MNet 23.743 40.655 0.960 0.9985

and PSNR. This is due to MSE and PSNR being absolute errors, however, SSIM
provides perception and saliency-based errors. The highest SSIM value has been
achieved by the R-MNet GAN based architecture (Fig. 10).

Fig. 10. Visual comparison of the results of di↵erent methods: a) original dermoscopic
image, b) dermoscopic image containing artificial hair, c) Navier-Stokes inpainted im-
age, d) Telea inpainted image, e) Hair SinGAN inpainted image, and f) R-MNet in-
painted image. The regions inpainted with Hair SinGAN are the least distinguishable
to the human eye. We can also observe, that the regions containing hair overlapping
the lesions were the hardest to inpaint.

When artifact levels increase, the recovery quality of the output image is also
shown to deteriorate, which we can be observed in Figure 11.
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a)

b)

c)

d)
x) y) z)

Fig. 11. Illustrations of the SSIM algorithm for three hair inpainting methods: x) Telea,
y) R-MNet and z) Hair SinGAN: a) image di↵erences with darker regions show more
disparity, b-c) filter using a minimum threshold area to remove the gray noise, and
highlight the di↵erences with a bounding box, d) visualisation of the exact di↵erences.

6 Conclusions

We demonstrate the application of image inpainting onto skin lesions for hair
removal, and highlight key issues in this field. Namely the lack of ground truth
data, and present a novel hair inpainting dataset for qualitative evaluation of in-
painting techniques. The most important contribution is the release of a dataset
of skin images with added hair. Although the dataset is limited in size it can
provide valuable benchmarking on future hair removal techniques. However, we
continue to work on extending the number of images and will release a larger
second version at a later date. We hope that the existence of a large collection of
corresponding images with their reference ground truths, will be a useful addi-
tion to the ISIC database, helpful for researchers wishing to work on skin lesions.
Furthermore, we plan to add di↵erent artifacts such as measuring tools, such as
air bubbles and dark corner. We have used this dataset to test four inpainting al-
gorithms - two classical approaches (Navier-Stokes and Telea) and two of our own
implementations based on GANs. Available ground truth images allowed us to
statistically evaluate those methods. The lowest MSE was achieved by the Telea
method. However, in terms of other metrics the best performing method proved
to be R-MNet. We note however that while Hair SinGAN achieved slightly in-
ferior results, it was only trained on a single image for each example.

Acknowledgments

We gratefully acknowledge the funding support of the research project by
the program “Excellence initiative—research university” for the AGH UST and
the NAWA Bekker Scholarship for J. Jaworek-Korjakowska.



Skin Hair dataset: hair inpainting methods in dermoscopy images 15

References
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