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Abstract. Deep Learning failure cases are abundant, particularly in the
medical area. Recent studies in out-of-distribution generalization have
advanced considerably on well-controlled synthetic datasets, but they do
not represent medical imaging contexts. We propose a pipeline that relies
on artifacts annotation to enable generalization evaluation and debiasing
for the challenging skin lesion analysis context. First, we partition the
data into levels of increasingly higher biased training and test sets for
better generalization assessment. Then, we create environments based on
skin lesion artifacts to enable domain generalization methods. Finally, af-
ter robust training, we perform a test-time debiasing procedure, reducing
spurious features in inference images. Our experiments show our pipeline
improves performance metrics in biased cases, and avoids artifacts when
using explanation methods. Still, when evaluating such models in out-
of-distribution data, they did not prefer clinically-meaningful features.
Instead, performance only improved in test sets that present similar ar-
tifacts from training, suggesting models learned to ignore the known set
of artifacts. Our results raise a concern that debiasing models towards a
single aspect may not be enough for fair skin lesion analysis.

Keywords: skin lesions, artifacts, debiasing, domain generalization

1 Introduction

Despite Deep Learning’s superhuman performance on many tasks, models still
struggle to generalize, stalling the adoption of AI for critical decisions such as
medical diagnosis.

Skin lesion analysis is no exception. Recent works exposed concerning model
behaviors, such as achieving high performances with the lesions fully occluded
on the image [6], or exploiting the presence of artifacts (e.g., rulers positioned
by dermatologists to measure lesions) to shortcut learning [7]. Moreover, current
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models fail to cope with underrepresented populations such as Black, Hispanic,
and Asian people. Those shortcomings prevent automated skin analysis solutions
from wider adoption and from realizing their potential public health benefits.

Domain Generalization (DG), which in computer vision studies how models
fall prey to spurious correlations, is yet to be adequately adopted by the medical
image analysis literature, partly because medical data often lack the labeled en-
vironments which are a critical input to most DG techniques. Within a corpus of
data, Environments are groups or domains that share a common characteristic
(e.g., predominant image color, image capturing device, demographic similar-
ities). In DG research, datasets are often synthetic, creating environments on
demand, or multi-sourced, with an environment for each source. Medical data,
however, pose special challenges due to their complexity and multi-faceted na-
ture, presenting multiple ways of grouping data, or latent environments whose
full annotation is next to impossible. We are interested in adapting DG tech-
niques to benefit those complex and rich tasks, considering those challenges.

We start by allowing the assessment of generalization performance, even
when out-of-distribution data are unavailable, using a tunable version of “trap
sets” [7]. Next, we infer existing, latent environments from available data, en-
abling the adoption of robust learning methods developed in the DG literature.
Finally, after model training, we select robust features during test-time, censor-
ing irrelevant information. Our extensive experiments show that it is possible
to obtain models that are resilient to training with highly biased data. Code to
reproduce our experiments is available at https://github.com/alceubissoto/
artifact-generalization-skin.

Our main contributions are:

– We propose a method to adapt existing annotations into environments, suc-
cessfully increasing the robustness of skin lesion analysis models;

– We propose a test-time procedure that consistently improves biased models’
performance;

– We show that model debiasing is insufficient to increase out-of-distribution
performance. Better characterization of out-of-distribution spurious sources
is necessary to train more robust models.

2 Background
Domain Generalization (DG) and Domain Adaptation (DA) aim to study and
mitigate distribution shifts between training and test data for a known (in the
case of DA) or an unknown (in the case of DG) distribution test data distribution.
Here we focus on DG techniques since the test distribution is almost always
unknown for medical analysis.

A complete review of the extensive literature on DG is outside the scope of
this work. We point the reader to two recent surveys of the area [33,43]. In this
section, we will briefly review the two techniques directly used in this work.

DG techniques are contrasted with the classical Empirical Risk Mini-
mization [37] (ERM) learning criterion, which assumes that the samples are
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independent and identically distributed (i.i.d.) and that train and test sets are
sampled from the same distribution. For the sake of completeness, the ERM
minimization goal is defined as RERM(θ) = 1

n

∑n
i=1 ℓ (xi, yi; θ), where ℓ is the

classification loss, θ is the model’s parameters, and n is the number of sam-
ples (x, y). DG techniques deal with train–test distribution shifts. We present
two of them below.

Distributional Robust Optimization (DRO) [19,30] methods minimize
the maximum risk for all groups (while ERM minimizes the global average risk).
That way, the model focuses on high-risk groups, which usually comprise those
with correlations underrepresented in the dataset. The risk is calculated as:

RDRO(θ) := max
e∈Etr

ÊP e [ℓ(x, y; θ)], (1)

where we evaluate the expectation separately for each environment distribution
P e, and the data is separated into environments e, sampled from the set of all
environments available for training Etr.

DRO can prevent models from exploiting spurious correlations, for example,
if the risk is low for a biased group and high for an unbiased group. In that
case, success depends on groups being separated by bias. DRO can also raise
the importance of small groups (e.g., rare animal subspecies, rare pathological
conditions), which would be obliterated by averaging. DRO techniques require
explicitly labeled environments, and one of our main contributions is evaluating
one of them (GroupDRO) on inferred environments.

Representation Self-Challenging (RSC) [20] is a three-step robust deep
learning training method. At each training iteration, RSC sets to zero the most
predictive part of the model representation, according to the gradients. More
specifically, the model representations with the highest gradients will be set
to zero before the model update. Such feature selection causes less dominant
features in the training set to be learned by the model, potentially discarding
easy-to-learn spurious correlations and thus preventing the so-called shortcut
learning [32]. We use RSC as a strong baseline for comparing with our proposed
pipeline, since this technique does not require environment labels, being adapt-
able to any classification problem. In a recent benchmark [40], RSC appears as
one of the few effective methods, including for the PatchCamelyon histopathol-
ogy dataset [4, 22].

3 Methodology

The main objective is to learn more robust skin lesion representations using deep
learning for skin lesion analysis, considering the binary problem of melanoma vs.
benign. To achieve this, we present a pipeline (Fig. 1) that proposes 1) parti-
tioning data into train/test trap sets that simulate a highly biased scenario;
2) crafting and exploiting training data partitions (environments) to learn ro-
bust representations through GroupDRO [30]; 3) selecting task-relevant features
for inference, avoiding spurious ones.
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Fig. 1: Our proposed pipeline for debiasing. Images with artifacts are represented
by the drawings of rulers, dark corners, and the combination of both. White
circles represent samples where artifacts are absent. Our first step (A) partitions
data into challenging train and test sets, called Trap sets. The training set is
divided into environments (B). Each environment groups samples containing
the same set of artifacts. These environments are used to train a robust learning
algorithm, such as GroupDRO. In the last step (C), we select features of our trap-
test set, censuring the background which may provide spurious correlations.

3.1 Trap Sets

Since spurious correlations inflate metrics, DG methods require carefully crafted
protocols to measure generalization. Often, datasets introduce correlations with
the class labels (using an extraneous feature, such as color in ColorMNIST [2]),
which purposefully differ between the training and the test split.

Here, we follow the “trap set” procedure [7] to craft training and test with
amplified correlations between artifacts and class labels (malignant vs. benign),
which appear in opposite directions in the dataset splits. We adapt the trap
set protocol, introducing a tunable level of bias, from 0 (randomly selected sets)
to 1 (highly biased). This level controls, for each sample in the split, the proba-
bility of selecting it at random versus following the trap set procedure. Table 1
illustrates the correlations between artifact and class labels on the splits for the
bias levels used in this work. We think our trap sets can expand generalization
measurements to be used outside of specialized literature, reaching problems
that urgently need out-of-distribution performance assessment.

3.2 Artifact-based Environments

In DG, environments divide data according to spurious characteristics. For exam-
ple, ColorMNIST [2] is divided into two environments: one that correlates colors
with values (one color for each digit), and another with colors chosen randomly.
Some environments correspond to data sources, as in PatchCamelyon [4, 22],
where each environment comprises data collected at the same hospital.
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Table 1: Spearman correlations between diagnostic and each of the 7 considered
artifacts to build the trap sets. As the factor increase, so does the correlations
and differences between train and test.

factor set dark corner hair gel border gel bubble ruler ink patches

0 train 0.119 -0.104 0.003 0.055 0.142 0.023 -0.138
test 0.135 -0.112 0.023 0.047 0.162 0.030 -0.149

0.5 train 0.233 -0.185 0.083 0.052 0.246 0.048 -0.110
test -0.129 0.083 -0.156 0.038 -0.074 -0.025 -0.217

1.0 train 0.36 -0.282 0.178 0.056 0.352 0.096 -0.062
test -0.438 0.296 -0.35 0.049 -0.335 -0.113 -0.319

Arjovsky et al. [2] mention that environments act to “reduce degrees of free-
dom in the space of invariant solutions”. Thus, more environments help discard
spurious features during training [29]. The plethora of concepts available enables
multiple ways of dividing the dataset into environments, some of which will be
more successful than others at achieving robust representations.

Many annotated concepts could be used for environment generation for skin
lesion datasets. Recently, Daneshjou et al. [15] released a clinical skin lesion
dataset presenting per-image specialist annotated information on Fitzpatrick
skin types. Other metadata such as anatomical location, patient sex, and age
are available for some datasets, such as the ISIC2019 [12]. In this work, we use
the presence of artifacts in the image capture process to create the environment.
The presence of those artifacts gives models the opportunity to exploit spurious
correlations in order to shortcut learning [7, 12, 39]. We aim to prevent that,
creating more robust models.

The 7 artifact types (see Table 1) may co-occur in lesions, with 27 = 128 com-
binations. Adding the binary class label, that gives 256 potential environments
(e.g., benign with no artifacts, benign with dark-corners, malignant with dark-
corners and rulers, etc.), although some of those may contain very few (or zero)
images. We use non-empty environments to train a robust learning algorithm.

Our risk minimization of choice is Group Distributionally Robust Optimiza-
tion (GroupDRO) [30], a variation of DRO that includes more aggressive regu-
larization, in the form of a hyperparameter to encourage fitting smaller groups,
higher ℓ2 regularization, and early stopping. It is a good fit due to our setting
with many few-samples environments.

3.3 NoiseCrop: Test-time Feature Selection

The last step in the pipeline is selecting robust features for inference. Recent
work [8] shows that test-time feature selection yields considerable gains in per-
formance, even when spurious correlations are learned.

In this step, we censor the input images’ information to prevent models from
using spurious features. We employ segmentation masks to separate foreground
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lesions, which host robust features, from background skin areas, which concen-
trate spurious information (e.g., skin tones, patches, and image artifacts).

We employ the ground-truth segmentation masks when available, and infer
the segmentation (with a Deep Learning model [10]) when they are not. Since
we post-process all masks through a convex hull operation, masks do not need to
be pixel-perfect, instead they must roughly cover the whole lesion. To minimize
the effect of the background pixels on the models, we replace them with a noisy
background sampled uniformly from 0 to 255 in each RGB channel. We also
eliminate lesion size information since the lack of scale guidelines for image
capture makes size an unreliable feature subjected to spurious correlations. The
convex hull of the segmentation mask is used to crop and re-scale the image
such that lesion occupies the largest possible area while keeping the aspect ratio.
We call those censoring procedures NoiseCrop (Fig. 2). Again, we stress, this
censoring is applied only to test images.

(a) Original (b) NoiseCrop

Fig. 2: Comparison between Original and NoiseCrop images. In NoiseCrop, we
remove the background information, replace it with a uniform noise, and resize
the lesion to occupy the whole image.

4 Results

4.1 Data

We employ several high-quality datasets in this study (Table 2). The class labels
are selected and grouped such that the task is always a binary classification
of melanoma vs. benign (other, except for carcinomas). We removed from all
analysis samples labeled basal cell carcinoma or squamous cell carcinoma. In the
out-of-distribution test sets, we kept only samples labeled melanoma, nevus, and
benign/seborrheic keratosis.

The artifact annotations [7] comprise 7 types: dark corners (vignetting), hair,
gel borders, gel bubbles, rulers, ink markings/staining, and patches applied to the
patient skin. Ground-truth labels for those are available for the ISIC2018 [36] and
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Table 2: Datasets used in our work
Dataset # Samples Classes Set Type

ISIC2019 (train) [11] 12,360 melanoma vs. nevus, actinic
keratosis, benign keratosis,
dermatofibroma, vascular lesion

training dermoscopic

ISIC2019 (val) [11] 2,060 as above validation dermoscopic

ISIC2019 (test) [11] 6,182 as above test dermoscopic

PH2 [24] 200 melanoma vs. nevus, benign
keratosis

test dermoscopic

Derm7pt-
Dermoscopic [21]

872 as above test dermoscopic

Derm7pt-Clinical [21] 839 as above test clinical

PAD-UFES-20 [27] 531 as above test clinical

Derm7pt [21]. For the larger ISIC2019, we infer those labels using independent
binary per-artifact classifiers fine-tuned on the ISIC2018 annotations5.

4.2 Model Selection and Implementation Details

Hyperparameter selection is crucial for DG. Following GroupDRO [30] proto-
col, we first performed a grid-search over learning rate (values 0.00001, 0.0001,
0.001), and weight-decay (0.001, 0.01, 0.1, 1.0), for 2 runs, on a validation set
randomly split from the training set. Although GroupDRO suggests an unbi-
ased (equal presence of all artifacts) validation set, we found such constraint
unrealistic, since a perfectly unbiased data distribution is impossible to predict
at training time. We follow the same hyperparameter search procedures for all
techniques, including the baselines. Given the best combination on the validation
set, we searched for GroupDRO’s generalization adjustment argument among the
values [0..5]. Sagawa et al. [30] added that hyperparameter to encourage fitting
smaller groups. We provide, to illustrate an upper-bound of GroupDRO’s perfor-
mance, an oracle version whose hyperparameters were selected with privileged
information from test time.

All models employ a ResNet-50 [17] backbone, fine-tuned for up to 100 epochs
with SGD with momentum and patience of 22 epochs. Conventional data aug-
mentation (shifts, rotations, color) is used on training and testing, with 50 repli-
cas for the latter. On all plots, lines refer to the average of 10 runs, with shaded
areas showing the standard error. Each run has a different training/validation
partition and random seed.

5 Each model is an ImageNet-pretrained Inceptionv4 [35] fine tuned with stochastic
gradient descent, with momentum 0.9, weight decay 10−3, and learning rate 10−3,
reduced to 10−4 after epoch 25. Batch size is 32, with reshuffling before each epoch.
Data augmented with random crops, rotations, flips, and color transformations.
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4.3 Debiasing of Skin Lesion Models

The trap set protocol partitions train and test in an intentional challenging way
that is catastrophic for naive models. Models that exploit spurious correlations
in the train “fall in the trap” resulting in very low performance (Table 3).

ERM achieves a ROC AUC of only 0.58, showing that trap sets successfully
creates challenging biased train and test sets [7]. Our pipeline consider Group-
DRO enabled by our artifact-based environments, followed by the application of
NoiseCrop in test images. Debiased methods should produce solutions that are
more invariant to the training bias, varying less from low to high bias scenarios.

Table 3: Results for different pipelines on a strong trap test (training bias = 1).
Our results considerably surpass the state of the art in that scenario.
†Reported from the original, using a ResNet-152 model on the ISIC2018 dataset.

Method ROC AUC

ERM [37] 0.58
RSC [20] 0.59

Bissoto et al. [7]† 0.54
GroupDRO (Ours) 0.68
Full Pipeline (Ours) 0.74

Our solution reaches 0.74 AUC in the most biased scenario, while the ERM
baseline performs not much better than chance — a difference of 16 percentage
points. Other robust methods that do not make use of environments (RSC and
Bissoto et al. [7]) failed to improve over ERM. To the best of our knowledge,
this is the first time debiasing solutions succeed for skin lesion analysis.
Summary: Our pipeline is an effective strategy for debiasing, surpassing base-
lines and previous works by 16 percentage points in high-bias scenarios.

4.4 Ablation Study

Next, we provide an ablation of our pipeline, individually evaluating the effects
of the robust training enabled by our artifact-based environments and Noise-
Crop. We consider increasingly high training biases to check the differences of
performances in low and high biased scenarios. We show our results in Fig. 3:
performances on the right inferred over NoiseCrop images, and without it (orig-
inal images) on the left.

Artifact-based GroupDRO GroupDRO increases the robustness to arti-
facts, yielding an improvement of around 10 percentage points in the AUC metric
for high-bias scenarios. In such biased contexts, trap sets punish the model for
relying on the artifacts, causing both ERM and RSC to fall under 0.6 AUC. In
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Fig. 3: Ablation study of our method. Each line represent a training method.
On the left, we perform inference with original test samples, and in the right,
we use NoiseCrop for inference. The Oracle serves as an upper-bound, where we
ran our pipeline with access to the test distribution for hyperparameter decision.
All methods are evaluated at our trap sets with increasing bias. Our artifact-
based environments enable GroupDRO to improve robustness, and NoiseCrop
improved robustness of all methods.

low-bias scenarios, GroupDRO prevents models from relying on artifacts, caus-
ing the performance to drop compared to the baseline. When using privileged
information to select hyperparameters for GroupDRO, our oracle reached 0.77
AUC. In the DG literature, deciding hyperparameters is a crucial step, and it is
not uncommon to see methods completely fail when hyperparameters are cho-
sen without privileged information over unbiased sets [1, 16]. We believe that
our fine-grained environments considering each possible combination of artifacts
allowed for more robustness to hyperparameter decision.

Test-time debiasing To complete our proposed pipeline (as Fig. 1), we per-
form feature selection on inference-time. Unlike the direction usually pursued in
the literature [2, 30], our debiasing method does not require altering any proce-
dure during training. The idea is to select the features present in the image dur-
ing test evaluation, forcing the network to use the correct correlations learned to
make the prediction. In Fig. 3 (right), the scenario drastically changes when the
same networks from the left of the figure are tested with NoiseCrop images, es-
pecially for the most biased scenario. The ERM model, which was slightly better
than chance when classifying skin lesions with unchanged images, surpassed 0.72
AUC when evaluated with NoiseCrop images. Composing this test procedure
alongside robust training methods further improves performance, achieving our
best result. The reported harm in the performance for less biased scenarios can
be illusory since exploiting biases naturally translates to better in-distribution
performance but less generalization power.

The steep increase in performance when using NoiseCrop test samples with
the baseline model suggests that the network learns correct correlations even
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when training is heavily contaminated with spurious correlations, contrary to
previous belief [28]. Still, we achieve our highest performance by using the debias-
ing procedure (through GroupDRO) and the NoiseCrop test. As in our pipeline,
training and test-time debiasing are necessary to create more robust models.
Test-time debiasing appears as a quick effective method to increase robustness
at the cost of using domain knowledge of the task. The main challenge is to make
test-time debiasing more general, relying less on existing annotations, such as
the segmentation masks we use for skin lesion images.
Summary: Artifact-based GroupDRO is an effective strategy for debiasing, and
masking artifacts (spurious correlations) during test enable correct features to be
used for inference. Our ablation suggests that models still learn robust predictive
features even when trained on highly-biased data, but are ignored when known
spurious correlations appear during test-time.

4.5 Out-of-distribution Evaluation

We have previously shown the increased robustness of skin lesion analysis models
when training with our artifact-based environments and NoiseCrop test samples.
Now, we investigate the effect of the acquired robustness on out-of-distribution
sets, which present different artifacts and attributes. Does robustness to the
annotated artifacts cause models to rely more on robust features in general? We
show our results in Fig. 4.

Derm7pt Clinical PAD−UFES−20 Derm7pt Dermoscopic PH2
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Fig. 4: The different lines compare the ERM baseline, our environment-enabled
GroupDRO, and our full pipeline. We train the models with increasingly high bi-
ased sets (trap train). We evaluate the performance on 4 out-of-distribution test
sets comprising clinical and dermoscopic samples. Unlike the plots using trap test
for evaluation, trends here are subtler. The debiasing procedure improves per-
formances on PH2, PAD-UFES-20, and for biased models on Derm7pt-Clinical.
On Derm7pt-Dermoscopic, baselines still perform better, despite all the bias in
train.

The performances on out-of-distribution test sets are more stable than on
trap tests across training biases. This is because trap-test contains opposite
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correlations from training, punishing the model for learning the encouraged spu-
rious correlations. Still, PH2 and PAD-UFES-20 lines show slight negative and
positive trends, respectively, indicating the presence and exploitation of biases.

Our results show very noisy out-of-distribution performance according to the
technique used. Our full pipeline present consistent advantage for PAD-UFES-
20, while presenting lower performances at all other cases. Interestingly, when we
skip NoiseCrop, using only GroupDRO for debiasing, we achieve positive results
for all training biases in PH2, and for high training biases in Derm7pt Clinical.
For Derm7pt-Dermato, the robust training procedure yielded no gains.

The differences between artifacts present in training (which are increasingly
reinforced as training bias increases) and test may explain such irregular be-
havior. Analyzing the artifacts of each out-of-distribution test-set, we verified
that the datasets most affected by the debiasing procedures reliably display a
subset of the artifacts present on training. Specifically, PH2 presents dark cor-
ners, while PAD-UFES-20 display ink-markings. Derm7pt present rare cases of
dark corners, and different style of rulers. Hair is the only artifact in all 4 test
sets, while patches, and gel borders are absent in all sets. In Fig. 5, we show
a selection of the artifacts from each considered out-of-distribution test-set. In
such scenario, the models appear to learn to avoid known artifacts from training
environments instead of learning to rely on clinically-relevant features.

(a) (b) (c) (d)

Fig. 5: Artifacts from the out-of-distribution test sets. While (a) PH2 and (b)
PAD-UFES-20 present similar artifacts to ISIC2019 (our training set), Derm7pt
((c) Clinical and (d) Dermoscopic) present different ones. We hypothesize this
caused debiasing solutions to be more effective in PH2 and PAD-UFES-20.

Another possible explanation for such variation is hinted by the overall low
performance of NoiseCrop (except for PAD-UFES-20). There is a chance that
the low performances are due to the domain shift introduced by the background
noise, but this is unlikely since such shift did not affect our ISIC2019 experi-
ments, where NoiseCrop reliably achieved our best performances. A more con-
cerning and plausible explanation is that when censored of background informa-
tion, models can not exploit other available sources of spurious correlations. Such
spurious correlations are present in training and may even have very low corre-
lations to the label. In addition, the natural distribution shift of correct features
that happen in out-of-distribution sets, cause performances to drop. It is possible
then, that the performance achieved by ERM and GroupDRO are overoptimistic.
This shows the challenges of debiasing skin lesion models, agreeing with previous
works [7] that suspected models combine weak correlations from several sources
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that may be hard to detect. For further advancing debiasing, future datasets
must explicitly describe possible sources of spurious correlations [14].
Summary: When considering biased training scenarios, our proposed debiasing
solutions surpassed baselines in 3 out of 4 test sets. Still, improvements depend
on the similarity between the confounders used to partition environments and
the ones present in test. Models fail when background is censored.

4.6 Qualitative Analysis

To inspect the effects from another angle, we used ScoreCAM [38] to create
saliency maps6. We contrast our robust trained model with the ERM solution on
the most biased scenario (training bias 1.0). In Fig. 6, we show cherry-picked ma-
lignant cases from the trap-test set that were misclassified by the ERM or Group-
DRO, and that focused on an artifact. There are numerous samples in which the
saliency maps indicate that ERM models focus on rulers. When trained with
GroupDRO, models often correctly shift their attention to the lesion, causing
the prediction to be correct. There are also cases where the baseline’s attention
correctly focuses on a lesion (even though the prediction is erroneous) and the
robust model focuses on the artifact, but these are considerably less frequent.

Fig. 6: Qualitative analysis of malignant samples from the trap-test. We show
three sets, each showing the original image followed by ScoreCam saliency maps
of ERM and GroupDRO models (ours), in this order. Red (dashed) and blue
(solid) borders mark wrong and correct predictions, respectively. In most sce-
narios, GroupDRO can shift the focus of the model from the artifact to the
lesion (first two cases). However, there are still failure cases where the opposite
happens (last case).

5 Related Work

Artifacts on skin lesion datasets. Artifacts affect skin-lesion-analysis models,
which achieve a performance considerably higher than chance in images with the
lesion fully occluded [6]. Generative models can amplify such biases [25]. Further
investigation [7] analyzed the correlations between artifacts and labels, showing
that, even with modest correlations, artifacts harmed performances. An analy-
sis of the ISIC 2019 challenge [12] quantified the error rates of the top-ranked

6 To minimize stochastic effects in the saliency maps, we compare models trained with
the same random seed.
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models when artifacts were present, finding that ink markings were particularly
harmful for melanoma classification. Another work [14] recommended that fu-
ture skin-lesion datasets describe artifacts and other potential confounders as
metadata.

Evaluation of generalization performance. Out-of-distribution performance
must be measured in challenging protocols, whose craft is laborious requiring
attention to class proportions, correlations to other objects, or to background
colors, textures, and scenes (e.g., ObjectNet [5], ImageNet-A [18]). Partially or
fully synthetic datasets (e.g., natural images on artificial backgrounds) allow fine
control of the spurious correlationsand are often employed in more theoretical
works, or as a first round of evaluations elsewhere [1, 2]. An alternative to syn-
thetic or handcrafted datasets is to employ naturally occurring environments
(such as data source) and split the data holding out some environments exclu-
sively for testing [16, 34], e.g., in PatchCamelyon17-WILDS [4], one of the five
source hospitals is used for testing, while the others are used for training.

Our assessment scheme forgoes either synthetic data or splitting the sets by
hand. Our scheme requires (ground-truth or inferred) annotations for potential
bias sources (such as the artifacts we use in this work), but once those are avail-
able, the trap sets automatically amplify their effect by creating train and test
splits with inverse correlations. The tunable trap sets proposed in this work al-
low controlling a level of bias.

Debiasing medical imaging. Environment-dependent debiasing techniques
seldom appear in the literature on medical image analysis. That is partly due
to the lack of environment annotations, e.g., potential biasing attributes or arti-
facts. One way to see environments is through the lenses of causality, where they
could be thought of as interventions in data [2]. Direct interventions in real-world
data can be unfeasible or at least uncommon. For example, collecting the same
image under different acquisition devices is uncommon if not for domain gener-
alization purpose studies. Other types of shifts, such as the ones characterized
by physical attributes, are impossible to intervene upon. It is impossible, for ex-
ample, to see how a lesion on the face would be if it were in the palms and soles.
Still, ideally, we would have enough environments to explain every source of noise
in data, with slight differences between them. When environments are not anno-
tated a priori, works develop mechanisms to create them. A common strategy is
to assign whole data sources as environments [3,4,22]. However, when this strat-
egy is successful, the different data sources (and environments) characterize only
changes in a few aspects, such as the acquisition device. When differences across
data sources are considerable, environments differ in many aspects simultane-
ously, harming debiasing performance. Other methods to generate environments
rely on using differences in classes distributions [41], data augmentation pro-
cedures [9, 42], or generative modeling [23]. After environments or domains are
artificially generated through one of the techniques above, robust training use
environments for feature alignment.
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In our work, we use annotations of artifacts to create environments. Each
environment presents a unique combination of artifact and label, yielding over
90 in training environments. Models trained with our environments successfully
learned to avoid using artifacts for inference, improving performance in high-bias
setups.

6 Conclusion
Debiasing skin lesion models is possible. In this paper, we introduced a pipeline
that enables bias generalization assessment without access to out-of-distribution
sets, followed by a strategy to create environments from available metadata, and
finally, a test-set debiasing procedure. We evaluated our pipeline using a large
challenging training dataset and noisy (inferred) artifact annotations.

Our findings suggest that domain generalization techniques, such as Group-
DRO, can be employed for debiasing, as long as the environments represent spu-
rious fine-grained differences, such as the presence of artifacts. Also, we showed
that models learn a diverse set of features (spurious and robust), even in biased
scenarios, and that removing spurious ones during test yields surprisingly good
results without any training procedure changes. When we use training and test-
time debiasing, we achieve our best result — GroupDRO enabled learning more
robust features, while NoiseCrop allows using them during inference. For out-
of-distribution sets, the debiasing success depends on the similarity between the
artifacts they display and those in training, used to partition environments. De-
spite potentially learning more robust features with GroupDRO, the presence of
different artifacts and spurious correlations in test-time can still bias predictions.

In future work, we envision methods that are less reliant on labels for both
environment partition and test-time debiasing. The domain generalization liter-
ature is evolving, proposing methods that learn to separate environments solely
from data [1,13], but are still to see the same success of supervised approaches.
Alternatively to test-time debiasing, methods for model editing [26, 31] could
enable practitioners to guide models from a few annotated images by making
explicit the presence of artifacts and other spurious features.
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