GAN-Based Data Augmentation and
Anonymization for Skin-Lesion Analysis:
A Critical Review
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GAN-based augmentation is a method to
mitigate the lack of data
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Preliminary experiments did not reliably

Improve performance

What are we doing wrong?

® Systematic Literature Review
on GAN-based augmentation
in the medical context.

® \What did we learn?
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Abstract. Skin cancer is by far the most common type of cancer. Early
detection is the key to increase the chances for successful treatment sig-
nificantly. Currently, Deep Neural Networks are the state-of-the-art re-
sults on automated skin cancer classification. To push the results fur-



Optimize on Ignore performance
test set fluctuations
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Choosing hyperparameters directly on the

test-set x

hyperparameter
decision
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GAN-augmented models are more thoroughly
optimized x

Weak Baselines
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Ignoring performance fluctuations x




Are the sampling method and the amount of
synthetic images key factors for GAN-based
augmentation?




Methods

Our work evolved to a critical analysis of
GAN-based augmentation
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Augmentation vs.
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We consider different GANs

Both translation and noise-based

Real SPADE PGAN StyleGAN2
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We evaluate different sampling methods

best worst diverse

random
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We sample different of real and synthetic

real synthetic
14.805 images from ISIC 2019 (14.805 / 2) images generated with a GAN
malignant
N~ ___—

benign
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real : synthetic
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We sample different of real and synthetic

real synthetic
14.805 images from ISIC 2019

benign

1:1:1

real : synthetic : synthetic
benign malignant
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All models are trained under the same design

To select the best training checkpoint for the GAN, we consider
both the and the

GAN Architecture Epochs FID |

SPADE 300 16.62
pix2pixHD 400 19.27
PGAN 890 39.57

StyleGAN2 565 15.98
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All models are trained under the same design

We perform based on the validation loss.
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All models are trained under the same design

We apply conventional data augmentation to
(both during train and test).
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All models are trained under the same design

We evaluate our models in
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All models are trained under the same design

For statistical significance, we
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Results

GAN-based augmentation did not reliably
Improve performance
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GAN-based augmentation on in-distribution test
did not reliably improve performance
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GAN-based augmentation on out-of-distribution
test improved performance
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GAN-based anonymization on in-distribution test
did not reliably improve performance
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GAN-based anonymization on out-of-distribution
test improved performance
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Takeaway:
Be cautious about evaluation protocols
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Code, Data & Paper:

https://github.com/alceubissoto/gan-critical-review

Alceu Bissoto alceubissoto@ic.unicamp.br

Thank y ou ! Eduardo Valle dovalle@dca.fee.unicamp.br

Sandra Avila sandra@ic.unicamp.br
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