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GAN-based augmentation is a method to 
mitigate the lack of data
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What are we doing wrong?

• Systematic Literature Review 
on GAN-based augmentation 
in the medical context.

• What did we learn?

Preliminary experiments did not reliably 
improve performance
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Optimize on 
test set

Weak 
Baselines

Ignore performance 
fluctuations

Sampling of 
synthetic data



Choosing hyperparameters directly on the 
test-set

hyperparameter 
decision
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GAN-augmented models are more thoroughly 
optimized

Weak Baselines

GAN-Augmented
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Ignoring performance fluctuations
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Are the sampling method and the amount of 
synthetic images key factors for GAN-based 
augmentation?

?
…
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Our work evolved to a critical analysis of 
GAN-based augmentation

Methods
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Augmentation vs. Anonymization
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We consider different GANs

Real Pix2pixHD SPADE PGAN StyleGAN2

Both translation and noise-based
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We evaluate different sampling methods

random best
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We sample different ratios of real and synthetic
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We sample different ratios of real and synthetic
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All models are trained under the same design

GAN Architecture Epochs FID ↓

SPADE 300 16.62

pix2pixHD 400 19.27

PGAN 890 39.57

StyleGAN2 565 15.98

To select the best training checkpoint for the GAN, we consider 
both the time spend on training and the FID score.
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We perform early stopping based on the validation loss.

17

All models are trained under the same design

To select the best training checkpoint for the GAN, we consider 
both the time spend on training and the FID score.



We apply conventional data augmentation to all experiments 
(both during train and test).
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All models are trained under the same design

To select the best training checkpoint for the GAN, we consider 
both the time spend on training and the FID score.

We perform early stopping based on the validation loss.



We evaluate our models in 5 different test sets.
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All models are trained under the same design

To select the best training checkpoint for the GAN, we consider 
both the time spend on training and the FID score.

We perform early stopping based on the validation loss.

We apply conventional data augmentation to all experiments 
(both during train and test).



For statistical significance, we run our experiments 10 times.
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All models are trained under the same design

To select the best training checkpoint for the GAN, we consider 
both the time spend on training and the FID score.

We perform early stopping based on the validation loss.

We apply conventional data augmentation to all experiments 
(both during train and test).

We evaluate our models in 5 different test sets.



GAN-based augmentation did not reliably 
improve performance (with some exceptions)

Results
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GAN-based augmentation on in-distribution test 
did not reliably improve performance 
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GAN-based augmentation on out-of-distribution 
test improved performance 
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GAN-based anonymization on in-distribution test 
did not reliably improve performance 
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GAN-based anonymization on out-of-distribution 
test improved performance 
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Takeaway:
Be cautious about evaluation protocols
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Thank you!

Code, Data & Paper:
https://github.com/alceubissoto/gan-critical-review
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