GAN-Based Data Augmentation and Anonymization for Skin-Lesion Analysis:

A Critical Review

<u>Alceu Bissoto¹</u>, Eduardo Valle², Sandra Avila¹

¹Institute of Computing ²School of Electrical and Computing Engineering RECOD Lab., University of Campinas (UNICAMP), Brazil

GAN-based augmentation is a method to mitigate the lack of data

GAN-based augmentation is a method to mitigate the lack of data

Preliminary experiments did not reliably improve performance

4

What are we doing wrong?

- Systematic Literature Review on GAN-based augmentation in the medical context.
- What did we learn?

Skin Lesion Synthesis with Generative Adversarial Networks

Alceu Bissoto¹, Fábio Perez², Eduardo Valle², and Sandra Avila¹

 $^1{\rm RECOD}$ Lab, IC, University of Campinas (Unicamp), Brazil $^2{\rm RECOD}$ Lab, DCA, FEEC, University of Campinas (Unicamp), Brazil

Abstract. Skin cancer is by far the most common type of cancer. Early detection is the key to increase the chances for successful treatment significantly. Currently, Deep Neural Networks are the state-of-the-art results on automated skin cancer classification. To push the results fur-

Choosing hyperparameters directly on the test-set

GAN-augmented models are more thoroughly optimized

Weak Baselines

Baseline

$\phi \bullet \phi = \mu \pm \sigma$

Are the sampling method and the amount of synthetic images key factors for GAN-based augmentation?

Methods

Our work evolved to a critical analysis of GAN-based augmentation

Augmentation vs. Anonymization

We consider different GANs

Both translation and noise-based

Real Pix2pixHD SPADE PGAN StyleGAN2

We evaluate different sampling methods

random

sorted according to CNN scores

oHash-based removal of near duplicates

We sample different ratios of real and synthetic

real

14.805 images from ISIC 2019

synthetic

(14.805 / 2) images generated with a GAN

We sample different ratios of real and synthetic

real

synthetic

14.805 images from ISIC 2019

To select the best training checkpoint for the GAN, we consider both the **time spend on training** and the **FID score**.

GAN Architecture	Epochs	$FID\downarrow$
SPADE	300	16.62
pix2pixHD	400	19.27
PGAN	890	39.57
StyleGAN2	565	15.98

To select the best training checkpoint for the GAN, we consider both the **time spend on training** and the **FID score**.

We perform early stopping based on the validation loss.

To select the best training checkpoint for the GAN, we consider both the **time spend on training** and the **FID score**.

We perform **early stopping** based on the validation loss.

We apply conventional data augmentation to all experiments (both during train and test).

To select the best training checkpoint for the GAN, we consider both the **time spend on training** and the **FID score**.

We perform **early stopping** based on the validation loss.

We apply conventional data augmentation to **all experiments** (both during train and test).

We evaluate our models in 5 different test sets.

To select the best training checkpoint for the GAN, we consider both the **time spend on training** and the **FID score**.

We perform **early stopping** based on the validation loss.

We apply conventional data augmentation to **all experiments** (both during train and test).

We evaluate our models in **5 different test sets.**

For statistical significance, we run our experiments 10 times.

Results

GAN-based augmentation did not reliably improve performance (with some exceptions)

GAN-based augmentation on in-distribution test did not reliably improve performance

GAN-based augmentation on out-of-distribution test improved performance

GAN-based anonymization on in-distribution test did not reliably improve performance

GAN-based anonymization on out-of-distribution test improved performance

Takeaway:

Be cautious about evaluation protocols

Code, Data & Paper:

https://github.com/alceubissoto/gan-critical-review

Thank you!

Alceu Bissoto alceubissoto@ic.unicamp.br Eduardo Valle dovalle@dca.fee.unicamp.br Sandra Avila sandra@ic.unicamp.br

ISIC Workshop @ CVPR 2021