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Skin Cancer

Why do we care?
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Técnica agiliza diagnéstico de cancer
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Satide. da Unicamp treina para dentificar melanoma; taxa de acerto do algoritmo é de 86%, ante
67% na avaliagao de dermatologistas. Ideia 6 usar algoritmo para padroes i idos pelos

Inteligéncia artificial pode diagnosticar
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Statistical learning approach for
robust melanoma screening

Towards robust melanoma
screening: A case for enhanced
mid-level features

Transfer schemes for deep learning
in image classification
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Towards automated melanoma
screening: Proper computer vision &
reliable results

Knowledge transfer for melanoma
screening with deep learning

RECOD Titans at ISIC challenge 2017

Data, depth, and design: Learning
reliable models for skin lesion
analysis

Data augmentation for skin lesion
analysis

Skin lesion synthesis with generative
adversarial networks

(De)Constructing bias on skin lesion
datasets

Solo or ensemble? Choosing a CNN
architecture for melanoma
classification

Debiasing skin lesion datasets and
models? Not so fast
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lesion segmentation
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GAN-based data augmentation and
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Towards Automated Melanoma Screening:
Proper Computer Vision & Reliable Results

Michel Fornaciali, Micael Carvalho, Flavia Vasques Bittencourt, Sandra Avila, Eduardo Valle

Abstract—In this paper we survey, analyze and criticize cur-
rent art on automated melanoma screening, reimplementing a
baseline technique, and proposing two novel ones. Melanoma,
although highly curable when detected early, ends as one of
the most dangerous types of cancer, due to delayed diagnosis
and treatment. Its incidence is soaring, much faster than the
number of trained professionals able to diagnose it. Automated
screening appears as an alternative to make the most of those
professionals, focusing their time on the patients at risk while

safely discharging the other patients. However, the potential of
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Paper, Code & Data: https://github.com/learningtitans/melanoma-screening


https://github.com/learningtitans/melanoma-screening
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Mid-level descriptors are used to train and test Each image gets a single high-
high-level classifier that assigns class labels dimensional mid-level descriptor

VGG-M trained on ImageNet (source model):
S convolutional layers + 3 fuIIy connected layers — 1000 output classes
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i e l | n e Proposed model: all layers but the last are copied from pre-trained VGG-M;
p p New SVM layer trained on melanoma —* 2 output classes
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Deep Transfer Learning

M. Fornaciali, M. Carvalho, F. V. Bittencourt, S. Avila, E. Valle, “Towards automated melanoma screening: Proper computer vision & reliable results”, 2016.



Knowledge Transfer for Melanoma Screening with Deep Learning

Afonso Menegola'#, Michel Fornaciali'*, Ramon Pires®,
Fldvia Vasques Bittencourt®, Sandra Avila', Eduardo Valle™

TRECOD Lab, DCA, FEEC, University of Campinas (Unicamp), Brazil
°RECOD Lab, IC, University of Campinas (Unicamp), Brazil
*School of Medicine, Federal University of Minas Gerais (UFMG), Brazil
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ABSTRACT

Knowledge transfer impacts the performance of deep learning — the
state of the art for image classification tasks, including automated
melanoma screening. Deep learning’s greed for large amounts of
training data poses a challenge for medical tasks, which we can alle-
viate by recycling knowledge from models trained on different tasks,
in a scheme called transfer learning. Although much of the best art
on automated melanoma screening employs some form of transfer
learning, a systematic evaluation was missing. Here we investigate
the presence of transfer, from which task the transfer is sourced, and

Paper, Code & Data: https://github.com/learningtitans/melanoma-transfer
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ImageNet -> Melanoma J VGG-16

Double Transfer:
ImageNet -> Retina &
Retina -> Melanoma

A. Menegola, M. Fornaciali, R. Pires, F. V. Bittencourt, S. Avila, E. Valle, “Knowledge transfer for melanoma screening with deep learning”, ISBI 2017.
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RECOD Titans at ISIC Challenge 2017

Afonso Menegola’, Julia Tavares’, Michel Fornaciali, Lin Tzy Li, Sandra Avila, Eduardo Valle*

HISTORY

Our team has worked on melanoma classification since
early 2014 [1], and has employed deep learning with transfer
learning for that task since 2015 [2]. Recently, the community
has started to move from traditional techniques towards deep
learning, following the general trend of computer vision [3].
Deep learning poses a challenge for medical applications, due
to the need of very large training sets. Thus, transfer learning
becomes crucial for success in those applications, motivating
our paper for ISBI 2017 [4].

Our team participated in Parts 1 and 3 of the ISIC Challenge
2017, described below in that order. Although our team has
a long experience with skin-lesion classification (Part 3), this
Challenge was the very first time we worked on skin-lesion
segmentation (Part 1).

The code needed to reproduce our results is at our code
repository*.

C. Data Augmentation

We used online image augmentation, with up to 10%
horizontal and vertical shifts, up to 20% zoom, and up to
270° degrees rotation. Images were first resized — we tried
256x256 and 128 x 128, ultimately keeping the latter, which
was faster and resulted in similar performance. Transforming
the images before resizing them was slower and did not
improve the results.

D. Experiments

Our first attempt was a model based on the VGG network
[6]. The first part of the model consisted of the VGG-16 layers

Paper, Code & Data: https://arxiv.org/abs/1703.04819

Melanoma
Classification

12


https://arxiv.org/abs/1703.04819

ISIC Challenge 2017

Training data Validation data Test data
2000 images 150 iImages 600 images
951% 90.8% 87.4%

(internal validation)

A. Menegola, J. Tavares, M. Fornaciali, L. T. Li, S. Avila, E. Valle, “RECOD Titans at ISIC Challenge 2017", 2017.
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RECOD Titans at ISIC Challenge 2017

Afonso Menegola’, Julia Tavares’, Michel Fornaciali, Lin Tzy Li, Sandra Avila, Eduardo Valle*

HISTORY

Our team has worked on melanoma classification since
early 2014 [1], and has employed deep learning with transfer
learning for that task since 2015 [2]. Recently, the community
has started to move from traditional techniques towards deep
learning, following the general trend of computer vision [3].
Deep learning poses a challenge for medical applications, due
to the need of very large training sets. Thus, transfer learning
becomes crucial for success in those applications, motivating
our paper for ISBI 2017 [4].

Our team participated in Parts 1 and 3 of the ISIC Challenge
2017, described below in that order. Although our team has
a long experience with skin-lesion classification (Part 3), this
Challenge was the very first time we worked on skin-lesion
segmentation (Part 1).

The code needed to reproduce our results is at our code
repository*.

C. Data Augmentation

We used online image augmentation, with up to 10%
horizontal and vertical shifts, up to 20% zoom, and up to
270° degrees rotation. Images were first resized — we tried
256x256 and 128 x 128, ultimately keeping the latter, which
was faster and resulted in similar performance. Transforming
the images before resizing them was slower and did not
improve the results.

D. Experiments

Our first attempt was a model based on the VGG network
[6]. The first part of the model consisted of the VGG-16 layers

Paper, Code & Data: https://arxiv.org/abs/1703.04819

Melanoma
Classification
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ISIC Challenge 2017

Models + data J

Image resolution
Class/sample-weighting schemes
Curriculum learning

SVM decision layer

Training and test augmentation J
Patient data

Per-image normalization «

Segmentation information

Stacking models and meta-learning J
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A. Menegola, J. Tavares, M. Fornaciali, L. T. Li, S. Avila, E. Valle, “RECOD Titans at ISIC Challenge 2017", 2017.



2° factors x 5 datasets = 2560 experiments

Neurocomputing 383 (2020) 303-313

Contents lists available at ScienceDirect

NEUROCOMPUTING

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Data, depth, and design: Learning reliable models for skin lesion M)
analysis gy

Eduardo Valle®*, Michel Fornaciali?, Afonso Menegola?, Julia Tavares?, Flavia Vasques
Bittencourt®, Lin Tzy Li“¢, Sandra Avila®

aSchool of Electrical and Computing Engineering, University of Campinas (UNICAMP), Av. Albert Einstein 400, Campinas, SP 13083-852, Brazil
bSchool of Medicine, Federal University of Minas Gerais (UFMG), Alamedalvaro Celso 55, Belo Horizonte, MG 30150-260, Brazil

CInstitute of Computing, University of Campinas (UNICAMP), Av. Albert Einstein 1251, Campinas, SP 13083-852, Brazil

dSamsung R&D Institute Brazil (SRBR), Campinas, SP, Brazil

Paper, Code & Data: https://github.com/learningtitans/data-depth-design
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“Amount of train data has disproportionate influence, explaining 46% of the variation in performance.”

“Other than data, the most important factor was the use of data augmentation on test”

Table 3
Selected lines from the 176-line ANOVA table; most of the omitted lines (126) had p-values > 0.05. Absolute explanation based on n2-measure, relative explanation ignores
residuals and choice of test dataset ().

Factor p-value Explanation (%) Best AUC (%) Worst AUC (%)
Abs. Rel. Treatment Mean Treatment Mean
a Model architecture < 0.001 0 1 Y resnet 84 inception 83
b Train dataset < 0.001 5 46 full 85 challenge 81
c Input resolution < 0.001 1 5 598 84 299-305 82
d Data augmentation 0.17 0 0 default 83 custom 83
e Input normalization 0.001 0 0 default 83 erase mean 83
f Use of segmentation < 0.001 0 2 no 84 yes 83
g Duration of training 0.003 0 0 full 83 half 83
h SVM layer < 0.001 0 4 ( no 84 yes 83
i Augmentation on test < 0.001 1 12 yes 84 no 82
j Test dataset < 0.001 75 full.split 96 edra.clinical 66

Paper, Code & Data: https://github.com/learningtitans/data-depth-design
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E. Valle, M. Fornaciali, A. Menegola, ). Tavares, F. V. Bittencourt, L. T. Li, S. Avila, “Data, depth, and design: Learning reliable models for skin lesion analysis”, 2020.
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Data Augmentation for Skin Lesion Analysis

Fébio Perez', Cristina Vasconcelos?, Sandra Avila®, and Eduardo Valle!

'RECOD Lab, DCA, FEEC, University of Campinas (Unicamp), Brazil
2Computer Science Department, IC, Federal Fluminense University (UFF), Brazil
SRECOD Lab, IC, University of Campinas (Unicamp), Brazil

Paper, Code & Data: https://github.com/fabioperez/skin-data-augmentation
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Augmentation on Training & Testing
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Paper, Code & Data: https://github.com/fabioperez/skin-data-augmentation

F. Perez, C. Vasconcelos, S. Avila, E. Valle, “Data augmentation for skin lesion analysis”, ISIC Workshop, MICCAI, 2018. Best paper award.
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Let's generate data!

Generative Adversarial Networks (GANS)
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| SEE BAD DATA

Spoiler alert! The film: “The Sixth Sense”, the line: “I see dead people”
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.. Using Progressive Growing GANs (PGAN)
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Skin Lesion Synthesis with
Generative Adversarial Networks

Alceu Bissoto!, Fébio Perez?, Eduardo Valle?, and Sandra Avila'

'RECOD Lab, IC, University of Campinas (Unicamp), Brazil
2RECOD Lab, DCA, FEEC, University of Campinas (Unicamp), Brazil

Paper, Code & Data: https://github.com/alceubissoto/gan-skin-lesion

23
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.. uUsing pix2pixHD

24
A. Bissoto, F. Perez, E. Valle, S. Avila, “Skin lesion synthesis with generative adversarial networks”, ISIC Workshop, MICCAI, 2018.



GAN-Based Data Augmentation and Anonymization for
Skin-Lesion Analysis: A Critical Review

Alceu Bissoto! Eduardo Valle> Sandra Avila'
nstitute of Computing (IC) 2School of Electrical and Computing Engineering (FEEC)
RECOD Lab., University of Campinas (UNICAMP), Brazil

Paper, Code & Data: https://github.com/alceubissoto/gan-aug-analysis

us{ng DIX2PIXHD
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A. Bissoto, F. Perez, E. Valle, S. Avila, “Skin lesion synthesis with generative adversarial networks”, ISIC Workshop, MICCAI, 2018.


https://github.com/alceubissoto/gan-aug-analysis

dark border hair

Dataset biases may inflate the
performance of models!

gel border color marker

b

ruler ink markings

A. Bissoto, M. Fornaciali, E. Valle, S. Avila, “(De)Constructing bias on skin lesion datasets”, ISIC Workshop, CVPR, 2019. =~ Best paper award.
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(De)Constructing Bias on Skin Lesion Datasets

Alceu Bissoto! Michel Fornaciali> Eduardo Valle> Sandra Avila!
nstitute of Computing (IC) 2School of Electrical and Computing Engineering (FEEC)
RECOD Lab., University of Campinas (UNICAMP), Brazil

traditional only skin bounding box bounding box 70%

Paper, Code & Data: https://github.com/alceubissoto/deconstructing-bias-skin-lesion
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Is it possible to be completely bias free?

But, if we destroy the performance’ of 157 dermatologists on I1SIC: 67% AUC
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A. Bissoto, M. Fornaciali, E. Valle, S. Avila, “(De)Constructing bias on skin lesion datasets”, ISIC Workshop, CVPR, 2019. =~ Best paper award.

AUC (%)

derm7pt ISIC Cross-dataset

Brinker et al., “The melanoma classification benchmark”, European Journal of Cancer, 2019.
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Debiasing Skin Lesion Datasets and Models? Not So Fast

Alceu Bissoto! Eduardo Valle’> Sandra Avila!
nstitute of Computing (IC) 2School of Electrical and Computing Engineering (FEEC)
RECOD Lab., University of Campinas (UNICAMP), Brazil

F 1 1} V.‘\
L 1| 3 i i 4

Paper, Code & Data: https://github.com/alceubissoto/debiasing-skin
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A. Bissoto, E. Valle, S. Avila, “Debiasing skin lesion datasets and models? Not so fast”, 2020.
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AN EVALUATION OF SELF-SUPERVISED PRE-TRAINING FOR
SKIN-LESION ANALYSIS

A PREPRINT

Levy Chaves! Alceu Bissoto! Eduardo Valle? Sandra Avila!
nstitute of Computing (IC) 2School of Electrical and Computing Engineering (FEEC)
RECOD Lab., University of Campinas (UNICAMP), Brazil

Paper, Code & Data: https://github.com/VirtualSpaceman/ssl-skin-lesions

L. Chaves, A. Bissoto, E. Valle, S. Avila, “An evaluation of self-supervised pre-training for skin-lesion analysis”, 2021.
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https://github.com/VirtualSpaceman/ssl-skin-lesions

Supervised
training on
labeled natural
Images
SUP
J
il Supervised

fine-tuning on skin
lesion images

SSL: Self-Supervised Learning
UCL/SCL: Unsupervised/Supervised Contrastive Learning
FT: Fine-tuning

Self-supervised
pre-training on
unlabeled natural
images

Self-supervised
learning on
unlabeled or labeled
skin lesion images

Supervised
fine-tuning on skin
lesion images
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L. Chaves, A. Bissoto, E. Valle, S. Avila, “An evaluation of self-supervised pre-training for skin-lesion analysis”, 2021.
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L. Chaves, A. Bissoto, E. Valle, S. Avila, “An evaluation of self-supervised pre-training for skin-lesion analysis”, 2021.
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L. Chaves, A. Bissoto, E. Valle, S. Avila, “An evaluation of self-supervised pre-training for skin-lesion analysis”, 2021.
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L. Chaves, A. Bissoto, E. Valle, S. Avila, “An evaluation of self-supervised pre-training for skin-lesion analysis”, 2021.
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Melanoma Among Non-Hispanic Black Americans. Prev Chronic Dis 2019
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Dermatology Has a Problem With
Skin Color

Common conditions often manifest differently on dark skin. Yet

physicians are trained mostly to diagnose them on white skin.

(:) By Roni Caryn Rabin

Aug. 30, 2020

Dr. Jenna Lester, director of the Skin of Color Program at
University of California, San Francisco.




Frequency distribution of ITA bins in the ISIC2018 dataset
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MICCAL 2020 Fitzpatrick Scale
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Fitzpatrick 17k

Groh et al., Evaluating Deep Neural Networks Trained on Clinical Images in Dermatology with the Fitzpatrick 17k Dataset, CVPR 2021.
Pacheco et al., PAD-UFES-20: A skin lesion dataset composed of patient data and clinical images collected from smartphones, Data in Brief, 2020.
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Thanks!

Sandra Avila

www.ic.unicamp.br/~sandra
sandra@ic.unicamp.br
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