Learning A Meta-Ensemble Technique For Skin Lesion Classification And Novel Class Detection

ISIC Skin Image Analysis Workshop, June 15th, 2020

Subhranil Bagchi

Anurag Banerjee

Deepti R. Bathula

Department of Computer Science and Engineering Indian Institute of Technology Ropar

Problem Statement

- The ISIC Challenge¹
- Predicting Images of Categories: *Melanoma, Melanocytic nevus, Basal cell carcinoma, Actinic keratosis, Benign keratosis, Dermatofibroma, Vascular lesion, Squamous cell carcinoma, None of the others*
- Motivation
- Our approach: *Two-level hierarchical model*

Challenges with the ISIC 2019 Dataset

- Multi-source acquisition
- High-dimensional, low sample-space (25,331 images)
- *Eight* training classes with disproportionate samples: MEL (4,522), NV (12,875), BCC (3,323), AK (867), BKL (2,624), DF (239), VASC (253), SCC (628)
- Test time Novelty detection

Figure: Per-class histogram depicting class imbalance for ISIC 2019 Dataset^{1,2,3}

- 1. "The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions", Tschandl et. al. (2018)
- 2. "Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC)", Codella et. al. (2017)
- 3. "BCN20000: Dermoscopic Lesions in the Wild", Combalia et. al. (2019)

Preprocessing

Figure: Raw Images

Source ISIC 2019 Dataset

Figure: Images after preprocessing using *Shades of Gray*¹

Stacking Module

- Pre-trained Base learners:
 - EfficientNet-B2¹
 - EfficientNet-B5¹ (*two configurations*)
 - DenseNet-161²
- Meta-learner (stack of base-learners)
- Data Augmentation
- Trained with Weighted Cross-Entropy loss
- Ensemble of cross-validated models.

- 1. "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", Tan et. al. (2019)
- 2. "Densely Connected Convolutional Networks", Huang et. al. (2017)

Model Configuration

Base Model	Last Layer	Image Dim.	Crop Ratio
EfficientNet-B2	ReLU + log- SoftMax	320×320	$\frac{3}{4} \times \frac{3}{4}$
EfficientNet-B5	log- SoftMax	456×456	$\frac{3}{5} \times \frac{3}{5}$
EfficientNet-B5	ReLU + log- SoftMax	300×300	$\frac{3}{5} \times \frac{3}{5}$
DenseNet-161	log- Softmax	224×224	$\frac{3}{5} \times \frac{3}{5}$

Table: Base Learners' input configurations for Images

t-SNE Plots

Figure: t-SNE^{1,2} plot for Average Model on Validation Set- 4.2

1. "Visualizing Data using t-SNE", Maaten et. al. (2008)

2. "GPU Accelerated t-distributed Stochastic Neighbor Embedding", Chan et. Al. (2019)

Figure: t-SNE plot for Stack Model on Validation Set- 4.2

t-SNE Plots (Cont.)

Figure: t-SNE plot for Average Model on Validation Set- 2.2

Figure: t-SNE plot for Stack Model on Validation Set- 2.2

Class Specific - Known vs. Simulated Unknown Modules (CS-KSU)

- Class-wise individual modules (*one vs. rest*)
- Trained for multiple folds, (*with simulated unknowns*)
- ResNet-18¹
- Data Augmentation
- Trained with Weighted Cross-Entropy and Triplet Loss
- Prediction average
- Thresholding
- 1. "Deep Residual Learning for Image Recognition", He et. al. (2016)

Class Specific - Known vs. Simulated Unknown Modules - The Splits

• Trained with leave-one-*unknown-class*-out, one-*versus*-rest cross validation

Class Specific - Known vs. Simulated Unknown Modules - The Splits

Class Specific - Known vs. Simulated Unknown Modules - Training Process

14 Models per Known Class (i.e., per CS-KSU Module)

Class Specific - Known vs. Simulated Unknown Modules - Training Process

Thresholding Explained

Choice for Cost Functions

Weighted Cross Entropy Loss¹

• Deals with imbalanced class distribution

$$\mathcal{L}_{wce} = -\frac{1}{N} \sum_{c=1}^{C} \sum_{n=1}^{N} w_c \times y_n^c \times \log\left(h_\theta\left(x_n, c\right)\right)$$

where,

N =Total number of training examples

C = Total number of classes

 w_c = Weight for class c

$$y_n^c$$
 = Target label for training example n of class c

$$x_n =$$
 Input for training example n

 $h_{\theta} =$ Some model with weight parameter θ

Choice for Cost Functions

Triplet Loss¹

- Reduces distance between same class samples, whereas broadens otherwise
- Useful for margin in latent space between known and simulated unknowns

$$\mathcal{L}(A, B, Y) = max \Big(dist(A, B) - dist(A, Y) + \gamma, 0 \Big)$$

where,

- A is the anchor point embedding
- B is the embedding of an instance in same class as the anchor Y is the embedding of an instance not in anchor's class γ is a margin between positive and negative pairs dist() is some distance metric function

Testing Process - Complete Model

Results

Team/ Method	BMA	Unk. Class AUC	External Data
minjie (Ensemble)	0.632	0.705	Yes
Jost (Ensemble)	0.624	0.639	Yes
Sabanci University (Ensemble w/ ECOC)	0.602	0.582	No
Dermos (Ensemble)	0.595	0.500	No
Ours (Ensemble Avg. w/o Unknown detection	0.565	0.500	No
Ours Ensemble Stack w/o Unknown detection	0.591	0.500	No
Ours Ensemble Stack w/ Unknown detection	0.568	0.544	No

Table 1: Comparison with few other results fromISIC 2019 Live Leaderboard¹

	Ensemble Avg.	Ensemble Stack	Ensemble Stack w/ Unk. Det.
MEL	0.825	0.825	0.801
NV	0.873	0.843	0.838
BCC	0.851	0.853	0.814
AK	0.698	0.777	0.757
BKL	0.752	0.742	0.675
DF	0.782	0.813	0.814
VASC	0.819	0.816	0.816
SCC	0.706	0.749	0.747
UNK	0.500	0.500	0.544
Avg. AUC	0.756	0.769	0.756

Table 2: Class-wise AUC2 score of ourdifferent models

2. "The Meaning and Use of the Area Under a Receiver Operating Characteristic (ROC) Curve", Hanley et. al. (1982)

ROC Plots

Summary and Discussion

- A two-level hierarchical model was proposed in the work
- Stacking performs better than simple averaging, whereas CS-KSU module looks promising
- The hierarchical model is difficult to scale with increase in number of classes
- Trade off between AUC for Unknown class and BMA indicates the difficulty of the challenge
- The model's performance may improve with extra data

Thank you!