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Problem Statement

• The ISIC Challenge1

• Predicting Images of Categories: Melanoma, Melanocytic nevus, Basal cell carcinoma,

Actinic keratosis, Benign keratosis, Dermatofibroma, Vascular lesion, Squamous cell

carcinoma, None of the others

• Motivation

• Our approach: Two-level hierarchical model

1. Homepage of ISIC 2019 Challenge: https://challenge2019.isic-archive.com/
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Challenges with the ISIC 2019 Dataset

• Multi-source acquisition

• High-dimensional, low sample-space

(25,331 images)

• Eight training classes with

disproportionate samples: MEL

(4,522), NV (12,875), BCC (3,323),

AK (867), BKL (2,624), DF (239),

VASC (253), SCC (628)

• Test time Novelty detection Figure: Per-class histogram depicting class imbalance 
for ISIC 2019 Dataset1,2,3

1. “The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions”, Tschandl et. al. (2018)
2. “Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International

Skin Imaging Collaboration (ISIC)”, Codella et. al. (2017)
3. “BCN20000: Dermoscopic Lesions in the Wild”, Combalia et. al. (2019)
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Preprocessing

Figure: Raw Images

Figure: Images after preprocessing using Shades of Gray1

Source ISIC 2019 Dataset

1. “Shades of Gray and Color Constancy”, Finlayson et. al. (2004)
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Stacking Module

• Pre-trained Base learners:

• EfficientNet-B21

• EfficientNet-B51 (two configurations)

• DenseNet-1612

• Meta-learner (stack of base-learners)

• Data Augmentation

• Trained with Weighted Cross-Entropy

loss

• Ensemble of cross-validated models.

Figure: Stacking Module

51. “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, Tan et. al. (2019)
2. “Densely Connected Convolutional Networks”, Huang et. al. (2017)



Model Configuration
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Table: Base Learners’ input configurations for Images



Stacking Module
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Stacking Module
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Stacking Module
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Stacking Module
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Stacking Module
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Stacking Module
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Stacking Module
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t-SNE Plots

Figure: t-SNE1,2 plot for Average Model on Validation Set- 4.2 Figure: t-SNE plot for Stack Model on Validation Set- 4.2

1. “Visualizing Data using t-SNE”, Maaten et. al. (2008)
2. “GPU Accelerated t-distributed Stochastic Neighbor Embedding”, Chan et. Al. (2019)
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t-SNE Plots (Cont.)

Figure: t-SNE plot for Average Model on Validation Set- 2.2 Figure: t-SNE plot for Stack Model on Validation Set- 2.2
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Class Specific – Known vs. Simulated

Unknown Modules (CS-KSU)

• Class-wise individual modules (one vs. rest)

• Trained for multiple folds, (with simulated unknowns)

• ResNet-181

• Data Augmentation

• Trained with Weighted Cross-Entropy and Triplet Loss

• Prediction average

• Thresholding

1. “Deep Residual Learning for Image Recognition”, He et. al. (2016)
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Class Specific – Known vs. Simulated

Unknown Modules – The Splits
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Known
Class (C1)

Set

Simulated
Unknown
Class Set

Validation
Set

7 Combinations for the 
Simulated Unknown Class 
Set and Validation Set
e.g. {C2b, C3b, …, C8b}  {C7b, C1b}

7 Combinations for the 
Simulated Unknown Class 
Set and Validation Set
e.g. {C2a, C3a, …, C8a}  {C7a, C1a}

• Trained with leave-one-unknown-class-out, one-versus-rest cross validation



Class Specific – Known vs. Simulated

Unknown Modules – The Splits
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Known
Class (C1)

Set

Simulated
Unknown
Class Set

Validation
Set

A Fold-set



Class Specific – Known vs. Simulated

Unknown Modules – Training Process
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14 Models per Known 
Class (i.e., per CS-KSU 
Module)



Class Specific – Known vs. Simulated

Unknown Modules – Training Process
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Thresholding Explained
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Choice for Cost Functions

1. “The Real-World-Weight Cross-Entropy Loss Function: Modeling the Costs of Mislabeling”, Ho et. al. (2020)
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Weighted Cross Entropy Loss1

• Deals with imbalanced class distribution



Choice for Cost Functions

1. “FaceNet: A Unified Embedding for Face Recognition and Clustering”, Scroff et. al. (2015)
23

Triplet Loss1

• Reduces distance between same class samples, whereas broadens otherwise

• Useful for margin in latent space between known and simulated unknowns



Testing Process – Complete Model
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Figure: Diagram explaining the testing procedure



Testing Process – Explained
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Testing Process – Explained
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Testing Process – Explained
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Testing Process – Explained
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Testing Process – Explained
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Results

1. Our results stated, as compared on the ISIC Live Leaderboard 2019: Lesion Diagnosis only. URL: https://challenge2019.isic-archive.com/live-leaderboard.html
2. “The Meaning and Use of the Area Under a Receiver Operating Characteristic (ROC) Curve”, Hanley et. al. (1982)
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Table 1: Comparison with few other results from
ISIC 2019 Live Leaderboard1

Table 2: Class-wise AUC2 score of our
different models

https://challenge2019.isic-archive.com/live-leaderboard.html


ROC Plots

1. Source ISIC Live Leaderboard 2019: Lesion Diagnosis. URL: https://challenge2019.isic-archive.com/live-leaderboard.html
31

Figure: ROC plot for Average Model1 Figure: ROC plot for Stack Model1 Figure: ROC plot for Stack
plus CS-KSU Model1

https://challenge2019.isic-archive.com/live-leaderboard.html


Summary and Discussion

• A two-level hierarchical model was proposed in the work

• Stacking performs better than simple averaging, whereas CS-KSU module looks

promising

• The hierarchical model is difficult to scale with increase in number of classes

• Trade off between AUC for Unknown class and BMA indicates the difficulty of the

challenge

• The model’s performance may improve with extra data
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Thank you!


