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Neural Networks In
HealthCare

High performance of Al In
HealthCare

Real World Implementations are
still scarce...

- \Why"? One of the reasons...

Uncertainty: current neural
networks produce point
estimates, and don't give any
measure of confidence of the
orediction.
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Methods



Bayesian Neural Networks

- Uncertainties are formalized as
orobabillity distributions over the
model parameters (for
epistemic uncertainty) or model
inputs (for aleatoric uncertainty)

But how can we estimate the
orobability distributions”?
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Epistemic Uncertainty
Estimation

+ MonteCarlo Dropout

- When you want to estimate
using MonteCarlo dropout,
you sample using a “helper”
distribution (generally
bayesian / uniform...)

+ MonteCarlo Dropout can be
seen as sampling the
parameters of the NN with a
Binomial Distribution.
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Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning

Yarin Gal
Zoubin Ghahramani

University of Cambridge

Abstract

Deep leamning tools have gained tremendous at-
tention in applied machine learning. However
such tools for regression and classification do
not capture model uncertainty. In compari-
son. Bavesian models offer a mathematically
grounded framework Lo reason aboul model un-
certainty, bul usually come with a prohibilive
computational cost. In this paper we develop a
new theoretical framework casting dropout train-
ing in deep neural networks (NNs) as approxi-
mate Bayesian inference in deep Gaussian pro-
cesses. A direct result of this theory gives us
tools to model uncertainty with dropout NNs —
extracting information from existing models that
has been thrown away so far. This mitigates
the problem of representing uncertainty in deep
learning without sacrificing either computational
complexity or lest accuracy. We perform an ex-
tensive study of the properties of dropout’s un-
certainty. Various network architectures and non-
lincaritics are assessed on tasks of regression
and classification, using MNIST as an example.
We show a considerable improvement in predic-
tive log-likelihood and RMSE compared to ex-
isting state-of-the-art methods, and finish by us-
ing dropout’s uncertainty in deep reinforcement
learning.
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With the recent shift in many of these fields towards the use
of Bayesian uncertainty (Herzog & Ostwald, 2013; Trafi-
mow & Marks, 2015; Nuzzo, 2014), new needs arise from
deep learning tools.

Standard deep learning tools for regression and classifica-
tion do not capture model uncertainty. In classification,
predictive probabilities obtained at the end of the pipeline
(the softmax output) are often erroncously interpreted as
model confidence. A model can be uncertain in its predic-
tons even with a high softmax output (fig. 1). Passing a
point estimate of a function (solid line 1a) through a soft-
max (solid line 1h) results in extrapolations with unjustified
high confidence for points far from the training data. 2* for
example would be classified as class 1 with probability 1.
However, passing the distribution (shaded area 1a) through
a softmax (shaded area |h) better reflects classification un-
certainty far from the training data.

Model uncertainty is indispensable [or the deep learning
practitioner as well. With model confidence at hand we can
treat uncertain inputs and special cases explicitly. For ex-
ample, in the case of classification, a model might return a
result with high uncertainty. In this case we might decide
to pass the input to a human for classification. This can
happen in a post office, sorting letters according to their zip
code, or in a nuclear power plant with a system responsi-
ble for critical infrastructure (Linda et al.. 2009). Uncer-
lainty 1s 1mportant in reinforcement learning (RL) as well
(Szepesviri, 2010). With uncertainty information an agent



Aleatoric Uncertainty

EStI M at ION Test-time Data Augmentation for Estimation of
Heteroscedastic Aleatoric Uncertainty in Deep Neural

Networks

- MonteCarlo Sampling.. but from
capturing parameters it ol R
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Abstract

° We a‘ read y kn OW t h a-t ! D ata Deep neural networks (DNNs) have revolutionized medical image analysis and

disease diagnosis. Despite their impressive increase in performance, it is diffi-

- cult to generate well-calibrated probabilistic outputs for such networks such that

Au m e n t at I O n ' state-of-the-art networks fail to provide reliable uncertainty estimates regarding
g L their decisions. We propose a simple but effective method using traditional data
augmentation methods such as geometric and color transformations at (est (ime.

This allows to examine how much the network output varies in the vicinity of

examples in the input spaces. Despile its simplicity, our method yields useful

estimates for the input-dependent predictive uncertainties of deep neural networks.

We showcase the impact of our method via the well-known collection of fundus

o S am p ‘ I N g 't h e d a't a w I't h q images obtained from a previous Kaggle compelition.
priori random distribution | duenor

Deep neural networks (DNNs) have emerged as powerful image analysis and prediction tools also in
medical image analysis and disease diagnosis. For instance, DNNs surpassed or achieved human-level

Ove r' C a p't u r'I n g p a ra m e't e rS performance on skin cancer classification from dermoscopic images | 1] and diabetic retinopathy (DR)
detection from fundus images [2] . Despite their impressive improvement in various performance

metrics, such as accuracy, sensitivity, specificity, F1 score, or ROC-AUC, which mainly describe a

" ' model’s discriminative power, DNNs do not generate well-calibrated reliable uncertainty estimates

(rOt at | O n y t ra ﬂ S ‘ at I O n : C O ‘ O r, regarding their decisions |3, 4, 5. 6]. Especially in medical settings, uncertainty estimates are crucial,

however [7].

and aleatoric uncertainty |5]. Epistemic uncertainty can be formalized by means of a probability
distribution over the model parameters and accounts for our ignorance aboul them. It 1s also known

ao mndel mmeartaintu and ran he avnlainad awaw aivan annnch data S The remaining nincartainty fo

The predictive uncertainty of neural networks can he decomposed into two parts: epistemic uncertainty
E B N



Uncertainty Aggretation
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Abstract. Deep neural networks are becoming the new standard for
, T : . . :
9 1 > automated image classification and segmentation. Recently, such models
o (pT( 5[;)) — 7 E ( P ( ;)j) — PT ( X )) are also .gammg traction in the conte?:t. of medical dlagn.oslls..However.
—1 when using a neural network as a decision support tool, it is important
' to also quantify the (un)certainty regarding the outputs of the system.
Current Bayesian techniques approximate the true predictive output dis-
tribution via sampling, and quantifly the uncertainty based on the vari-
o : . ance of the output samples. In this paper, we highlight the limitations of
a aC aryya Oe IC I en a variance based metric, and propose a novel uncertainty metric based
on the overlap of the output distributions. We show that this yields
promising results on the HAMI10000 dataset [or skin lesion classification.

N

BC(h.i,he)(x) = Z Vher[n] ® heo[n)

n=1
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ISIC Challenge 2018

This dataset is composed of 10,015
dermoscopic Images corresponding
to 7,470 skin lesions.

—ach image Is paired with Its

corresponding label indicating the
lesion diagnosis and other metadata

SUr

patl

rounding the lesion and the

ent.

The test dataset of the ISIC 2018

Chal

the

Y

enge contains 1512 images that
participants are asked to classi
N thelr submission file.
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Measurement Type(s) skin lesions

Technology Type(s) digital curation
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----------------------------------------------------------------------------------------------------

Data Descriptor: The HAM10000

;dataset a large collection of
- multi-source dermatoscopic images
-of common pigmented skin lesions
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J - Training of neural networks for automated diagnosis of pigmented skin lesions is hampered by the small

- size and lack of diversity of available datasets of dermatoscopic images. We tackle this problem by

- releasing the HAM10000 ("Human Against Machine with 10000 training images") dataset. We collected

- dermatoscopic images from different populations acquired and stored by different modalities. Given this
- diversity we had to apply different acquisition and cleaning methods and developed semi-automatic

. workflows utilizing specifically trained nevral networks. The final dataset consists of 10015 dermatoscopic
- images which are released as a training set for academic machine learning purposes and are publicly

. available through the ISIC archive. This benchmark dataset can be used for machune Iearning and for
comparisons with human experts. Cases include a representative collection of all impartant diagnastic
categories in the realm of pigmented lesions. More than 5044 of lesions have been confirmed by pathology,
while the ground truth for the rest of the cases was either follow-up, expert consensus, ar confirmation by
- in-vivo confocal microscopy.




ISIC Challenge 2019

The training dataset of the ISIC Challenge 2019
consists of 25331 dermoscopic images.

Eight diagnostic categories: melanoma, melanocytic
nevus, basal cell carcinoma, actinic keratosis, benign
keratosis, dermatofibroma, vascular lesion, and
sguamous cell carcinoma.

This dataset includes all the images from the
HAM10000 dataset, and also adds images from the
BCN20000 dataset and the MSK dataset.

The BCN20000 dataset is considered to be
remarkably complex since it includes uncurated
images from day to day clinical practice.

The test dataset from the ISIC Challenge 2019
consists of 8238 images and includes a set of images
that are not contained in the diagnostic categories
provided in the train- ing split (Unknown category)

BCN20000: DERMOSCOPIC LESIONS IN THE WILD

A PREPRINT
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ABSTRACT

This article summarizes the BCN20000 dataset, composed of 19424 dermoscopic images of skin
lesions captured from 2010 to 2016 in the facilities of the Hospital Clinic in Barcelona. With this
dataset, we aim to study the problem of unconstrained classification of dermoscopic images of skin
cancer, including lesions found in hard-to-diagnose locations (nails and mucosa), large lesions which
do not fit in the aperture of the dermoscopy device, and hypo-pigmented lesions. The BCN200(K)
will be provided Lo the participants of the ISIC Challenge 2019 [8], where they will be asked Lo train
algorithms lo classily dermoscopic images of skin cancer automatically.

1 Background and Summary

Skin cancer is one of the most frequent types of cancer and manifests mainly in areas of the skin most exposed to the
sun. Since skin cancer occurs on the surface of the skin, its lesions can be evaluated by visual inspection. Dermoscopy
is a non invasive method which permils visualizing more profound levels of the skin as its surface reflection is removed.
Prior research has found that this technique permits improved visualization of the lesion structures, enhancing the
accuracy of dermatologists [1, 9].

The increased availability of dermoscopic images has motivated the appearance of more sophisticated algorithms
based on deep learning, mainly on convolutional neural networks [5, 13, 2], A significant player in the adoption of
these algorithms in the community has been the International Skin Imaging Collaboration (IS1C), which has been
organizing yearly challenges since 2016, where participants are asked to develop computer vision algorithms to segment
and classify skin lesions in dermoscopic images [10. 6. 4, 3]. T'schandl et al. showed that the performance of expert
dermatologist was already surpassed by the top-scoring algorithms of the 1SIC 2018 Challenge [11, 4]. However, as the
authors already pointed out, the algorithms tended to perform worse on images from other dermoscopic data sources,
which were not represented in the HAM10000 dataset [12].

In BCN20000, we aim to study the problem of unconstrained classification of dermoscopic images of skin cancer,
including lesions found in hard w diagnose locations (nails and mucosa), not segmentable and hypopigmented lesions:
dermoscopic lesions in the wild. Most of the images would be considered hard-to-diagnose and had to be excised and
histopathologically diagnosed. Together with the images. we provide valuable information related (0 the anatomic
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Base Architecture

Efficient-Net-BO architecture.

- Training Data Augmentation: rotations within a
range of 180 degrees, resized crops with
scales 0.4 to 0.6 and ratio of 0.9 to 1.1, color
jitters including bright- ness (10%), saturation
(10%), contrast (10%) and hue (3%),
horizontal and vertical flips.

- We use Adam optimization with a base
learning rate of 0.001 and Cosine Annealing
Warm Restarts

- To account for the severe class imbalance
present In the datasets, we use weighted
sampling to construct a uniform class
distribution in the training batches.

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Mingxing Tan' Quoc V. Le'!

Abstract

Convolutional Neural Networks (ConvNets) are
commonly developed at a fixed resource budget,
and then scaled up for better accuracy il maore
resources are available. In this paper, we sys-
temnatically study model scaling and 1dentify that
carefully balancing network depth, width, and res-
olution can lead to better performance. Based
on this observation, we propose a new scaling
method that uniformly scales all dimensions of
depth/width/resolution using a simple yet highly
effective compound coefficient. We demonstrate
the effecuveness of this method on scaling up
MobileNets and ResNet.

To go even further, we use neural architecture
search to design a new baseline network and
scale il up to obtain a family of models, called
EfficientNets, which achieve much belter accu-
racy and efficiency than previous ConvNelts. In
particular, our EfficientNet-B7 achieves slate-
of-the-art 84.4% top-1 / 97.1% top-5 accuracy
on ImageNet, while being 8.4x smaller and
6.1x faster on inference than the best existing
ConvNet. Our EfficientNets also transfer well and
achieve state-ot-the-art accuracy on CIFAR-100
(91.7%), Flowers (Y8.8%), and 3 other transfer
learning datasets, with an order of magnitude
fewer paramelers, Source code is al hilps:
ffgithub.com/tensarflovw/cpu/tree/
mastcr/moccls/official/cfficicentnet.
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Figure 1. Model Size vs. ImageNet Accuracy. All numbers are
for single-crop, single-model. Our EfficientNets significantly out-
perform other ConvNets. In particular, EfficientNet-B7 achieves
new state-of-the-art 84.4% top-1 accuracy but being 8.4x smaller

and 6.1x faster than GPipe. LfficientNet-I11 1s 7.6x smaller and
5.7x lasler than ResNel-152. Details are in Table 2 and 4.

time larger. However, the process of scaling up ConvNets
has never been well understood and there are currently many
ways to do it. The most common way is to scale up Con-
vNets by their depth (He et al., 2016) or width (Zagoruyko &
Komodakis, 2016). Another less commaon, but increasingly
popular, method is 1o scale up models by image resolution
(Huang et al., 2018). In previous work, itis common Lo scale
only one of the three dimensions — depth, width, and image
size. Though 1L 1s possible o scale two or three dimensions



Experiment Set 1
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Results Experiment Set 1 (l)
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Figure 1. Experiment 1. Uncertainty metrics as a function of correct or incorrect predictions in the ISIC Challenge 2018 dataset.

ISIC Challenge 2018 | 2019
No sampling 0.74 | 0.61
Monte Carlo Dropout | 0.73 | 0.61
Test Augmentation 0.76 | 0.64
Both 0.76 | 0.64

Table 1. Balanced accuracy for the trained classifier for different

inference sampling techniques.



Results Experiment Set 1(ll)
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Figure 2. Experiment 1. Evolution of balanced accuracy as the most uncertain samples are removed from the test dataset for Monte Carlo
dropout (a, d), Test Augmentation (b, e¢) and the combined method (c, f) for the ISIC Challenge 2018 (a, b, ¢) and ISIC Challenge 2019 (d,
e, f) datasets.



Experiment Set 2



Results Experiment Set 2 -
ISIC Challenge 2018
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Figure 4. Experiment 2. Uncertainty metrics used to detect out-of-distribution samples in the ISIC Challenge 2018 dataset. (a) shows

cpistemic uncertainty estimation metrics based on the Monte Carlo Dropout method and (b) shows aleatoric uncertainty metrics based on
the Test Augmentation method.

AUC for OOD Detection | Entropy | Var | BC
Monte Carlo Dropout 0.71 0.75 | 0.68
Test Augmentation 0.75 0.78 | 0.78
Both 0.76 0.80 | 0.79

Table 3. AUC of uncertainty metrics when used as predictors for

out-of-distribution detection in the ISIC Challenge 2018 dataset
(excluding samples from ImageNet).



Results Experiment Set 2 -
ISIC Challenae 2019
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Figure 5. Standardized histograms for the uncertainty metrics of the ISIC Challenge 2019 validation and test splits, with their corresponding
probability density function estimations and selected thresholds.

Uncertainty

Agg. Metric

Bal. Acc.

AUC. UNK

MC Drop.

Entropy
Variance
BC

0.476
0.508
0.525

0.613
0.645
0.579

Test Aug.

Entropy

Variance
BC

0411
0.390
0.377

0.660
0.684
0.622

Both

Entropy
Variance

BC

0.437
0.349
0.379

0.670
0.692
0.622

Control

0.550

0.500

Table 4. Balanced accuracy and AUC for out-of-distribution cate-

gory in the live leaderboard from the ISIC Challenge 2019.



Conclusions

Uncertainty metics are
poredictive of sample error

Uncertainty metrics are
oredictive of out of distribution

Selecting a threshold for OOD is
hard without exemplar samples




