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Why is this a problem?

• Network bias

• Poor Generalization

Class # Samples
Deep Net

Recall (%)

NV 6741 95

MEL 1119 66

BKL 1101 77

AKIEC 331 45

BCC 517 88

DF 116 43

VASC 143 68
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• Deal with class imbalance

• Not all classes are equally hard

• Are all samples equally important?

Class # Samples
Deep Net

Recall (%)

NV 6741 95

MEL 1119 66

BKL 1101 77

AKIEC 331 45

BCC 517 88

DF 116 43

VASC 143 68
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How to make the most of the available data?

• Data Augmentation

• Importance Sampling

• Sample Weighting
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• Class-Balanced Losses

– Class-balanced (CB)[1]:

𝑤𝑗 =
𝑁

𝑁𝑦𝑗

– Effective Number of Samples (ES)[2]:

𝑤𝑗 =
1−𝛽

1−𝛽
𝑁𝑦𝑗

,     𝛽 =
𝑁−1

𝑁

[1] Provost, Machine Learning From Imbalanced Datasets 101, AAAI 2000
[2] Cui et al., Class-balanced Loss Based on Effective Number of Samples, CVPR 2019
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• Class-Balanced Losses

– Class-balanced (CB):

𝑤𝑗 =
𝑁

𝑁𝑦𝑗

– Effective Number of Samples (ES):

𝑤𝑗 =
1−𝛽

1−𝛽
𝑁𝑦𝑗

,     𝛽 =
𝑁−1

𝑁
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• Curriculum Learning

arg min
𝒘

1

𝑀


𝑗

𝑀

𝑤𝑗 ℓ𝑗 + 𝐺 𝒘; 𝜆
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• Curriculum Learning

– Self-paced Learning (SPL)[1]:

𝐺 𝒘; 𝜆 = −𝜆 𝒘 1

– Online Hard Example Mining (OHEM)[2]:

𝐺 𝒘; 𝜆 = +𝜆 𝒘 1

[1] Kumar et al., Self-Paced Learning for Latent Variable Models, NeurIPS 2010
[2] Shrivastava et al., Training Region-based Object Detectors with Online Hard Example Mining, CVPR 2016
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• Curriculum Learning

– Self-paced Learning (SPL):

𝐺 𝒘; 𝜆 = −𝜆 𝒘 1

– Online Hard Example Mining (OHEM):

𝐺 𝒘; 𝜆 = +𝜆 𝒘 1
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• DNN Architectures

– Flat Classifier (VGG-16)

– Hierarchical Classifier[1]

• Dataset

– ISIC 2018

• Performance Metrics

– Recall

– Precision

– F1-Score

[1] Barata et al., Explainable Skin Lesion Diagnosis Using Taxonomies, Pattern Recognition 2020
[2] Woo et al., CBAM: Convolutional Block Attention Module, ECCV 2018

– Accuracy

– Balanced Accuracy

+ CBAM[2]
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• Weighting strategies significantly affect the performance of a DNN

• Some weighting schemes may induce bias

• Features learned by DNNs change according to the learning strategy

• OHEM achieves the best overall performance
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Thank You!

ana.c.fidalgo.barata@tecnico.ulisboa.pt


