

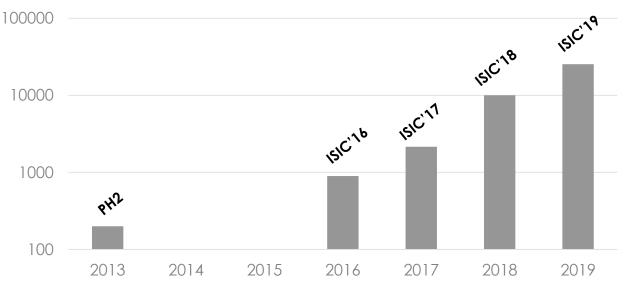
How Important Is Each Dermoscopy Image?

Catarina Barata and Carlos Santiago

LARSyS Laboratory of Robotics and Engineering Systems

Motivation

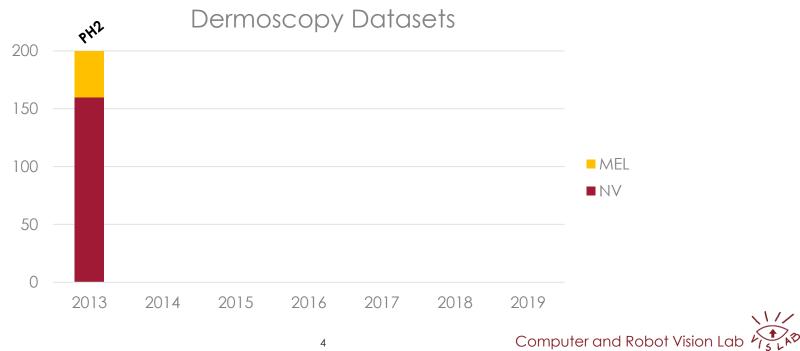
Dermoscopy Datasets



Motivation

Motivation

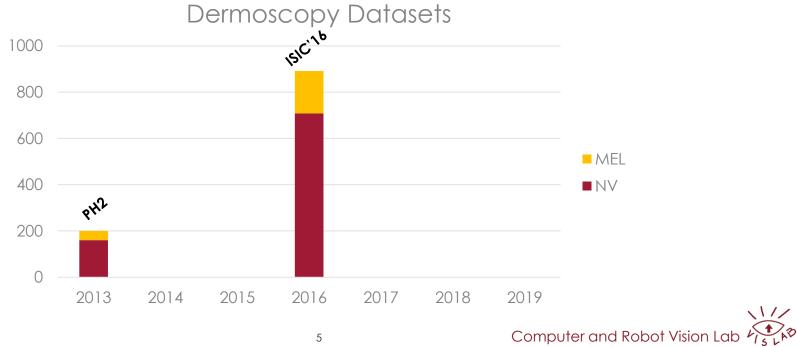
Class Distribution



Motivation

Class Distribution

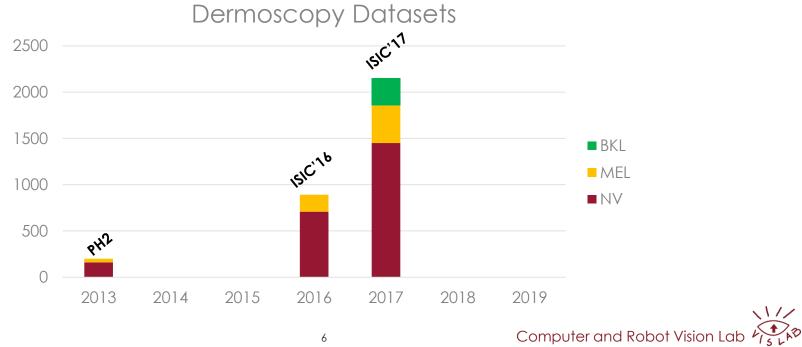
ÉCNICO ISBOA



Motivation

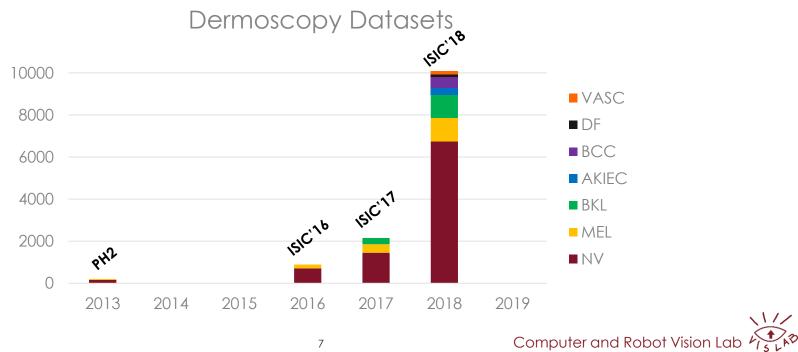
Class Distribution

ÉCNICO ISBOA



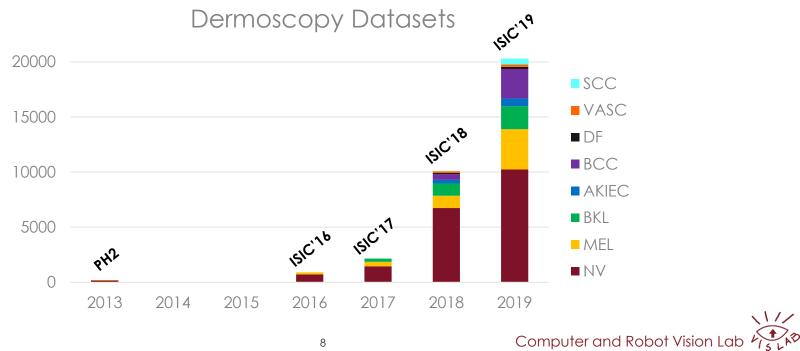
Motivation

Class Distribution



Motivation

Class Distribution



Motivation

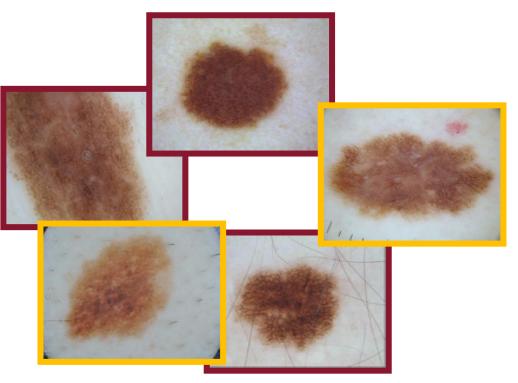
Why is this a problem?

• Network bias

CNICO

• Poor Generalization

Class	# Samples	Deep Net Recall (%)	
NV	6741	95	
MEL	1119	66	
BKL	1101	77	
AKIEC	331	45	
BCC	517	88	
DF	116	43	
VASC	143	68	



Challenges

- Deal with class imbalance
- Not all classes are equally hard
- Are all samples equally important?

Class	# Samples	Deep Net Recall (%)
NV	6741	95
MEL	1119	66
BKL	1101	77
AKIEC	331	45
BCC	517	88
DF	116	43
VASC	143	68

Goal

How to make the most of the available data?

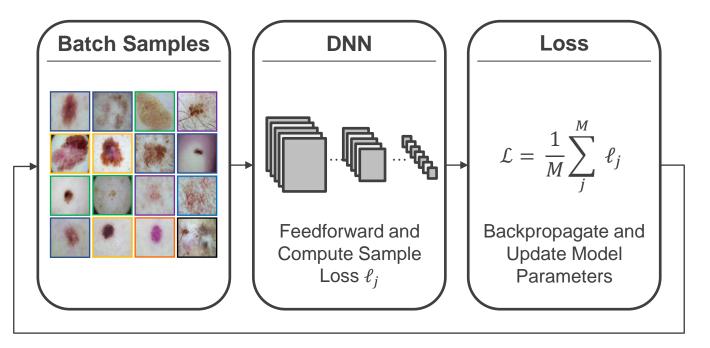
- Data Augmentation
- Importance Sampling
- Sample Weighting

Goal

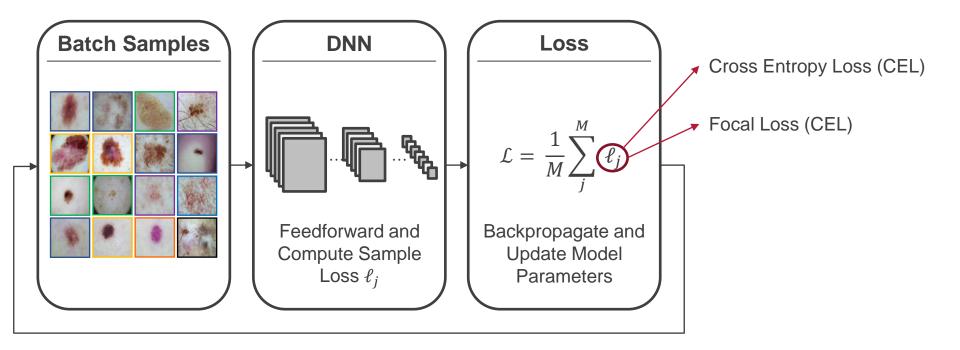
How to make the most of the available data?

- Data Augmentation
- Importance Sampling
- Sample Weighting

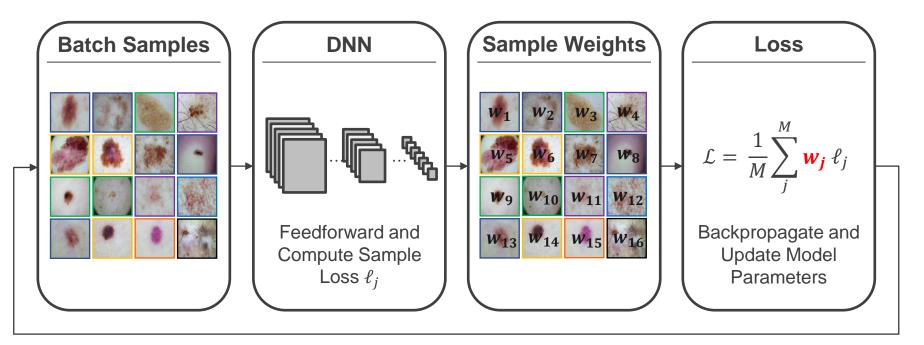
Sample Weighting



Sample Weighting



Sample Weighting



- Class-Balanced Losses
 - Class-balanced (CB)^[1]:

$$w_j = \frac{N}{N_{y_j}}$$

- Effective Number of Samples (ES)^[2]:

$$w_j = \frac{1-\beta}{1-\beta^{N_{y_j}}}, \qquad \beta = \frac{N-1}{N}$$

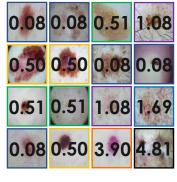
[1] Provost, Machine Learning From Imbalanced Datasets 101, AAAI 2000 [2] Cui et al., Class-balanced Loss Based on Effective Number of Samples, CVPR 2019 Computer and Robot Vision Lab $\stackrel{\scriptstyle {\cal K}}{\sim}$

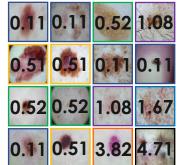
- Class-Balanced Losses
 - Class-balanced (CB):

$$w_j = \frac{N}{N_{\mathcal{Y}_j}}$$

- Effective Number of Samples (ES):

$$w_j = \frac{1-\beta}{1-\beta^{Ny_j'}}, \qquad \beta = \frac{N-1}{N}$$





Computer and Robot Vision Lab

11/

Curriculum Learning

$$\underset{\boldsymbol{w}}{\arg\min}\frac{1}{M}\sum_{j}^{M}w_{j}\,\ell_{j}+G(\boldsymbol{w};\boldsymbol{\lambda})$$

- Curriculum Learning
 - Self-paced Learning (SPL)^[1]:

 $G(\boldsymbol{w};\boldsymbol{\lambda}) = -\boldsymbol{\lambda} \|\boldsymbol{w}\|_1$

- Online Hard Example Mining (OHEM)^[2]:

$$G(\boldsymbol{w};\boldsymbol{\lambda}) = +\boldsymbol{\lambda} \|\boldsymbol{w}\|_1$$

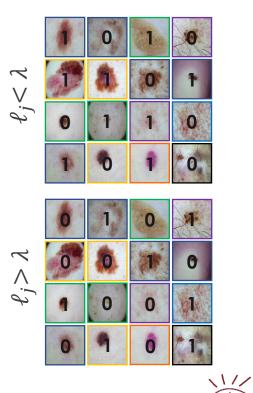
Kumar et al., Self-Paced Learning for Latent Variable Models, NeurIPS 2010
Shrivastava et al., Training Region-based Object Detectors with Online Hard Example Mining, CVPR 2016

- Curriculum Learning
 - Self-paced Learning (SPL):

 $G(\boldsymbol{w};\boldsymbol{\lambda}) = -\boldsymbol{\lambda} \|\boldsymbol{w}\|_1$

- Online Hard Example Mining (OHEM):

$$G(\boldsymbol{w};\boldsymbol{\lambda}) = +\boldsymbol{\lambda} \|\boldsymbol{w}\|_1$$



Computer and Robot Vision Lab k_{l}

Experimental Setup

- DNN Architectures
 - Flat Classifier (VGG-16)
- $+ CBAM^{[2]}$
- Hierarchical Classifier^[1]
- Dataset
 - ISIC 2018
- Performance Metrics
 - Recall
 - Precision

- Accuracy
- Balanced Accuracy

- F1-Score

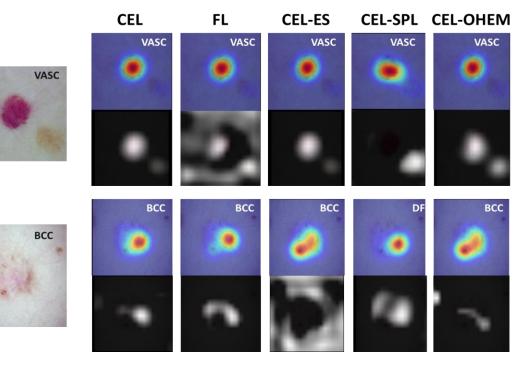
[1] Barata et al., Explainable Skin Lesion Diagnosis Using Taxonomies, Pattern Recognition 2020 [2] Woo et al., CBAM: Convolutional Block Attention Module, ECCV 2018 Computer and Robot Vision Lab

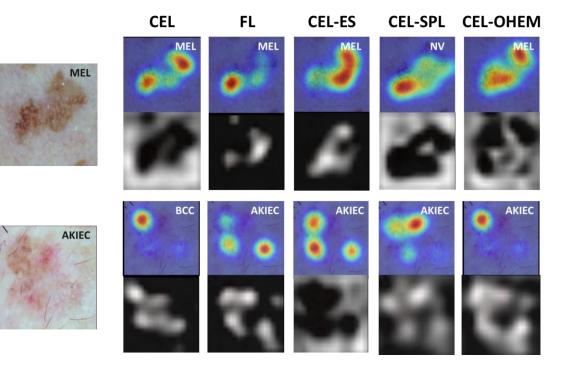
	Loss	Acc	BAcc	mPR	mF1
	-	87.5	75.5	80.0	77.0
CEL					
	-	87.0	74.5	79.0	76.0
FL					

	Loss	Acc	BAcc	mPR	mF1
	-	87.5	75.5	80.0	77.0
EL	СВ	84.0	78.4	76.0	76.5
	ES	84.5	76.7	77.0	76.0

	-	87.0	74.5	79.0	76.0
	СВ	83.0	76.9	73.0	75.0
FL	ES	83.5	78.0	74.0	75.5

	Loss	Acc	BAcc	mPR	mF1
	-	87.5	75.5	80.0	77.0
. 1	СВ	84.0	78.4	76.0	76.5
CEI	ES	84.5	76.7	77.0	76.0
\cup	SPL	85.5	68.8	76.5	72.0
	OHEM	87.0	76.4	79.0	76.5
	-	87.0	74.5	79.0	76.0
	СВ	83.0	76.9	73.0	75.0
FL	ES	83.5	78.0	74.0	75.5
	SPL	84.5	65.3	71.5	67.5
	OHEM	88.0	75.7	80.5	77.5





Conclusions

- Weighting strategies significantly affect the performance of a DNN
- Some weighting schemes may induce bias
- Features learned by DNNs change according to the learning strategy
- OHEM achieves the best overall performance

Thank You!

ana.c.fidalgo.barata@tecnico.ulisboa.pt

29