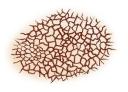


Medical Criteria

Pigment Network

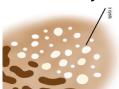


Globules

Negative Network

Streaks

Milia-like cysts



Asymmetry

asymmetrical

Border Regularity

even boarders uneven boarders

Color

one color

multi colored

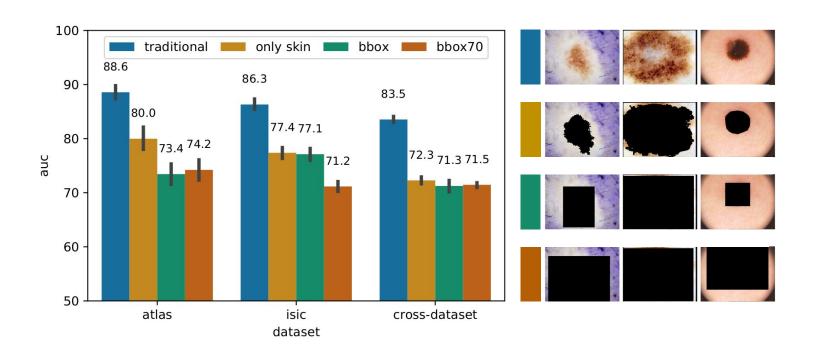
Diameter

smaller than 1/4 in.

larger than 1/4 in.

However, previously on ...

(De)Constructing Bias in Skin Lesion Datasets, Bissoto et al., ISIC Workshop @ CVPR 2019



Objective

Annotation regarding **7 visual artifacts** that can lead to dataset biases

How those artifacts **affect classification** models?

Bias removal in the skin lesion context

Objective

Annotation regarding **7 visual artifacts** that can lead to dataset biases

How those artifacts affect classification models?

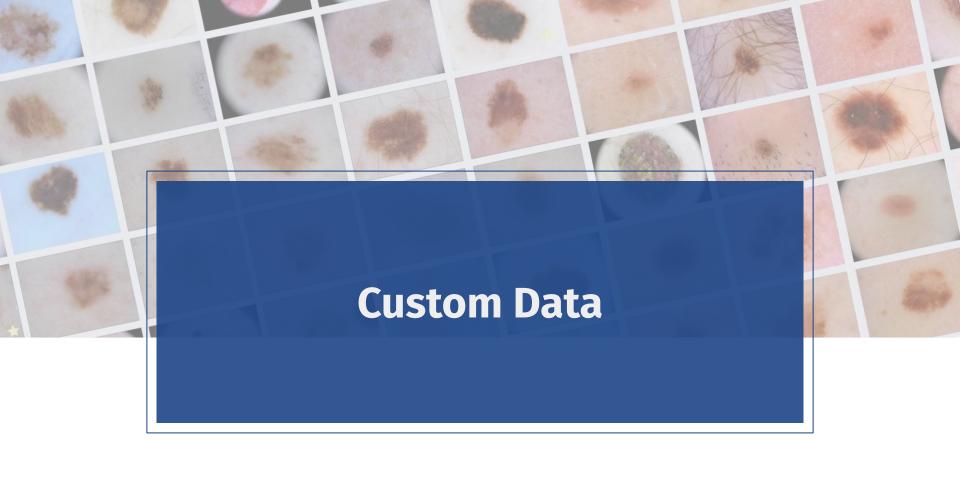
Bias removal in the skin lesion context

Objective

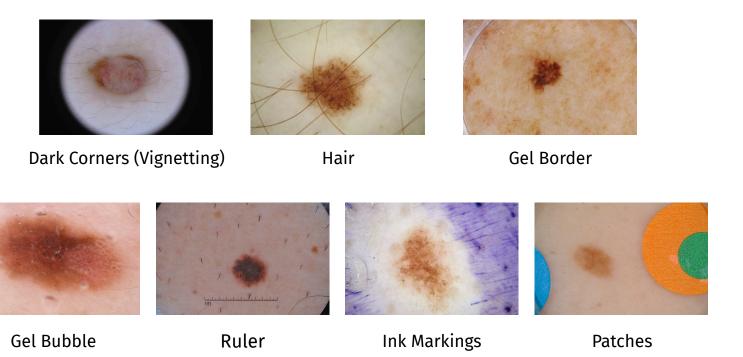
Annotation regarding **7 visual artifacts** that can lead to dataset biases

How those artifacts **affect classification** models?

Bias removal in the skin lesion context



Suspect Artifacts



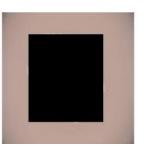
Suspect Artifacts

	Ruler	Dark Corners	Gel Bubble	Ink Markings	Hair	Gel Border	Patches
Spearman Correlation w.r.t. diagnosis	0.10	0.08	0.01	-0.07	-0.08	-0.10	-0.13

Suspect Artifacts

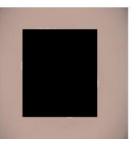
	Ruler	Dark Corners	Gel Bubble	Ink Markings	Hair	Gel Border	Patches
	, , , , , , , , , , , , , , , , , , ,						
Spearman Correlation w.r.t. diagnosis	0.10	0.08	0.01	-0.07	-0.08	-0.10	-0.13
Models' Identification Performance	98.2%	95.6%	85.3%	97.8%	94.0%	93.4%	98.2%

Normalized Datasets



Dataset	Traditional (%)	Skin Only (%)	Bbox (%)	Bbox70 (%)
ISIC	86.3	77.3	77.1	71.1
ISIC Normalized	81.5	72.7	67.0	59.8
Cross-dataset	83.5	72.3	71.3	71.5
Cross-dataset Normalized	77.1	69.0	67.2	64.1

Normalized Datasets



Dataset	Traditional (%)	Skin Only (%)	Bbox (%)	Bbox70 (%)
ISIC	86.3	77.3	77.1	71.1
ISIC Normalized	81.5	72.7	67.0	59.8
Cross-dataset	83.5	72.3	71.3	71.5
Cross-dataset Normalized	77.1	69.0	67.2	64.1

Trap Sets

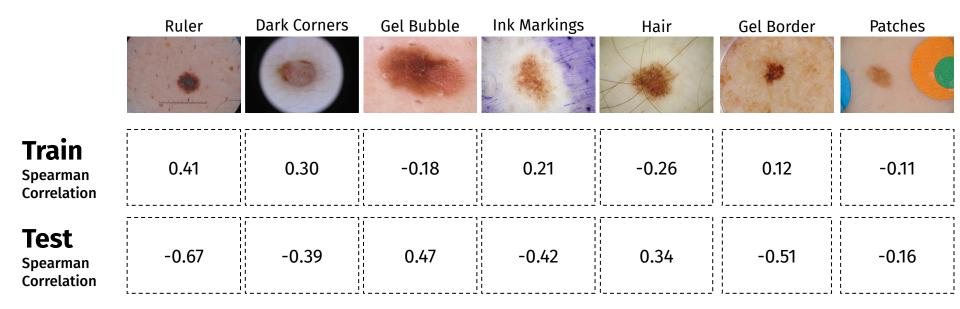
Uses artifacts to purposefully mislead classifiers.

Non-random splits maximize artifact bias on train and **opposite** bias on test.

Models that ignore artifacts should be unaffected.

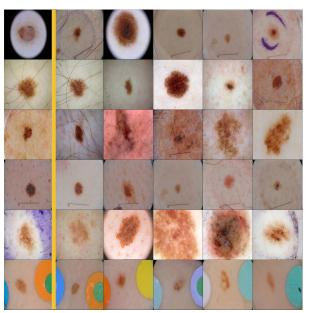
Models that exploit biased should fail catastrophically (all tested models did).

Trap Sets

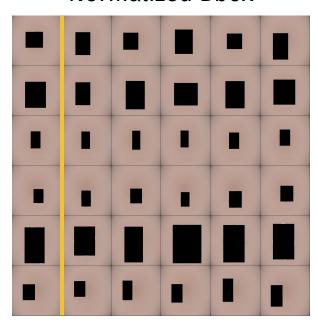


What features are being used?

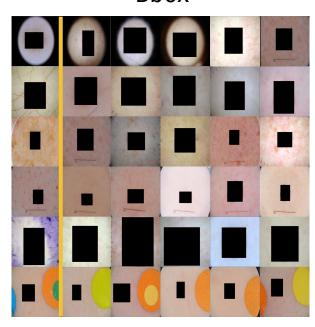
Traditional



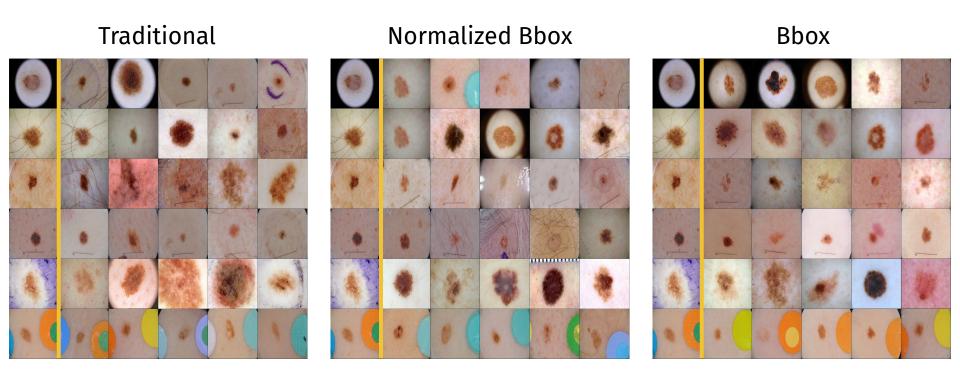
Normalized Bbox



Bbox

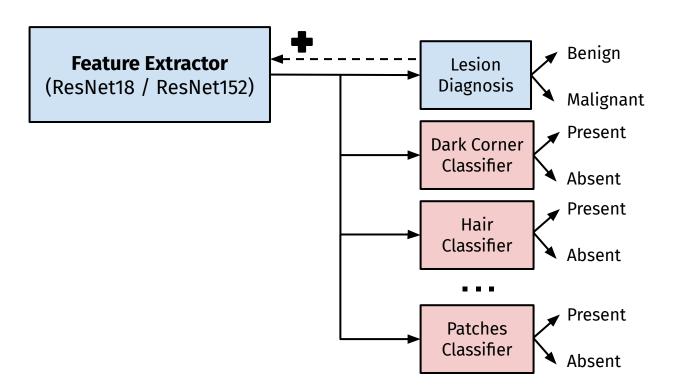


What features are being used?



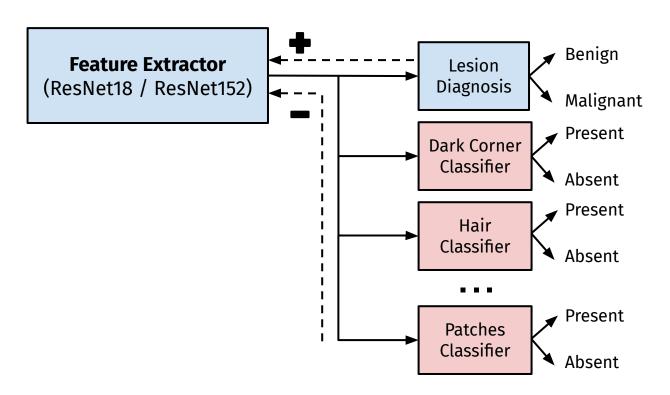
Debiasing - Learning not to Learn (LNTL)

Learning not to Learn: Training Deep Neural Networks with Biased Data, Kim et al., CVPR 2019



Debiasing - Learning not to Learn (LNTL)

Learning not to Learn: Training Deep Neural Networks with Biased Data, Kim et al., CVPR 2019



Debiasing

Experiment	Architecture	Trap Test (%)	Atlas Dermato (%)	Atlas Clinical (%)
Unchanged	Inceptionv4	52.6	78.5	63.4
Normalized	Inceptionv4	55.8	72.4	-
LNTL	ResNet152	54.5	78.4	70.1
Unchanged	ResNet18	44.7	72.2	65.8
Normalized	ResNet18	62.4	70.5	-
LNTL	ResNet18	51.4	76.0	68.2

Conclusions

Traditional models are less biased than previously thought (but they are still biased).

Debiasing methods **struggle** to deal with the skin cancer.

Domain adaptation, representation learning and **disentanglement** for more robust classifiers.

Conclusions

Traditional models are less biased than previously thought (but they are still biased).

Debiasing methods struggle to deal with the skin cancer.

Domain adaptation, representation learning and **disentanglement** for more robust classifiers.

Conclusions

Traditional models are less biased than previously thought (but they are still biased).

Debiasing methods **struggle** to deal with the skin cancer.

Domain adaptation, representation learning and **disentanglement** for more robust classifiers.

Thank you!

Alceu Bissoto alceubissoto@ic.unicamp.br Eduardo Valle dovalle@dca.fee.unicamp.br Sandra Avila **f o y** @sandraavilabr

Code & Data

