Agreement Between Saliency Maps and Human-Labeled Regions of Interest

Applications to Skin Disease Classification

Nalini Singh, Kang Li, David Coz, Christof Angermueller, Aaron Loh, Susan Huang, Yuan Liu

6.15.2020

Google Health

Project Overview

Goal

Determine if a skin disease classification model makes decisions for surprising reasons

Approach

Quantify agreement between model explanations and human-labeled regions of interest

Model Development Dataset*

- 19,870 de-identified adult dermatology cases
- 1-6 consumer-grade camera images + metadata per case
- Classes: 26 skin conditions + 'Other'
- Labels from aggregated board-certified dermatologist opinions

Saliency Evaluation Dataset

• 1,309 de-identified adult dermatology cases sampled at random from model development test set

Input Image

Model Architecture*

Input Image

Saliency Map

*Liu, Y., Jain, A., Eng, C. et al. A deep learning system for differential diagnosis of skin diseases. Nat Med (2020).

ISIC Skin Image Analysis Workshop @ CVPR 2020

Experiment Pipeline

Model Architecture

• Top-1 accuracy: 66%

Saliency Map Generation*

• Integrated Gradients:

$$IG_i(x) = (x_i - x'_i) \frac{1}{m} \sum_{k=1}^m \frac{\partial F(x' + \frac{k}{m}(x - x'))}{\partial x_i}$$

Saliency Map

*Sundararajan, Mukund, Ankur Taly, and Qiqi Yan. "Axiomatic attribution for deep networks." Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017.

ISIC Skin Image Analysis Workshop @ CVPR 2020

```
Experiment Pipeline
```


ISIC Skin Image Analysis Workshop @ CVPR 2020

Examples: High Agreement

Correctly Classified

Incorrectly Classified

Examples: Low Agreement

Correctly Classified

Incorrectly Classified

Results by Condition

	Ache
2	Actinic Keratinosis
3	Allergic Contact Dermatitis
4	Alopecia Areata
5	Androgenetic Alopecia
6	Basal Cell Carcinoma
7	Cyst
8	Eczema
9	Folliculitis
10	Hidradenitis
11	Melanocytic Nevus
12	Melanoma
13	Other
14	Post Inflammatory Hyperpigmentation
15	Psoriasis
16	Scar Condition
17	Seborrheic Dermatitis
18	Seborrheic Keratosis (SK/ISK)
19	Skin Tag
20	Squamous Cell Carcinoma
21	Stasis Dermatitis
22	Tinea
23	Urticaria
24	Verruca Vulgaris
25	Vitiligo

Aono

Results by Condition

Results by Condition

Results by Demographics

Summary & Conclusions

Quantitatively compared model explanations to human-labeled ROIs:

- Notably, found that model explanations point to 'normal anatomy' (e.g. hair, nails, and lips).
- Insights from analysis will guide targeted data collection and data augmentation strategies.
- Workflow could be used to identify differences between model explanations and human regions of interest for any model.

Related Work

- Eng. Clara, Y. Liu, and R. Bhatnagar. "Measuring clinician-machine agreement in differential diagnoses for dermatology." British Journal of Dermatology (2019).
- Liu, Yuan, et al. "A deep learning system for differential diagnosis of skin diseases." Nature Medicine (2020): 1-9.
- <u>Ghorbani, Amirata, et al. "DermGAN: Synthetic Generation of Clinical Skin</u> <u>Images with Pathology." NeurIPS ML4H Workshop (2019).</u>
- Singh, Nalini, et al., "Agreement Between Saliency Maps and Human-Labeled Regions of Interest: Applications to Skin Disease Classification.", CVPR ISIC Workshop (2020).