

On Out-of-Distribution Detection Algorithms with Deep Neural Skin Cancer Classifiers

Andre G. C. Pacheco¹ Chandramouli S. Sastry^{2, 3} Thomas Trappenberg² Sageev Oore^{2,3} Renato A. Krohling¹

¹Federal University of Espirito Santo - Vitória, Brazil
² Dalhousie University - Halifax, Canada
³ Vector Institute - Toronto, Canada

{agcpacheco, rkrohling}@inf.ufes.br, cssastry@dal.ca, {tt,sageev}@cs.dal.ca

INTRODUCTION	Methodology	Experiments	CONCLUSION
•00	0000000	0000	000

INTRODUCTION

What are out-of-distribution (OOD) samples?

 Samples that do not contain any of the labels modeled during training phase

INTRODUCTION

Problem:

- Deep Neural Softmax classifiers make over-confident predictions for OOD samples
- Detecting OOD samples is challenging

Objective:

 Detecting such OOD samples, in particular for skin cancer classification
 INTRODUCTION
 METHODOLOGY
 EXPERIMENTS
 CONCLUSION

 00
 00000000
 0000
 0000

INTRODUCTION

We examine the performance of the OOD detection algorithms with skin cancer classifiers

- ► State-of-the-art OOD algorithms:
 - ► ODIN (Liang et al., 2017)
 - ► Mahalanobis (Lee et al., 2018)
 - ► Gram-OOD (Sastry and Oore, 2019)

► Gram-OOD*:

 An extension of the Gram-OOD algorithm that generally performs better for this particular task

SUMMARY OF OOD ALGORITHMS

ODIN:

- Use softmax with temperature as confidence on perturbed inputs.
- ▶ Needs to fine-tune temperature and perturbation magnitude.

Mahalanobis:

- Computes layerwise Mahalanobis distances from class-conditional feature distributions.
- ► Mahalanobis distances are used to train a Logistic Regression Detector.
- ► Needs OOD samples to train the Logistic Regression Detector.

GRAM MATRIX OOD DETECTION

- Take into account intermediate feature activations
- Compute Gram Matrices at every layer and check for anomalously high or low values.
- ► Does not require any knowledge of OOD samples.
- Can work with any pre-trained model.

INTRODUCTION 000	Methodology 00●00000	Experiments 0000	Conclusion 000

GRAM MATRIX

- Let F_l refer to the activations at layer l of shape $[C_l, H_l * W_l]$.
- Gram Matrix is computed using F_l as:

$$G_l = F_l F_l^{\top} \tag{1}$$

► Gram Matrix of Order *p* is computed as:

$$G_l^p = F_l^p F_l^{p\top}$$
⁽²⁾

GRAM MATRIX AS PAIRWISE CORRELATIONS

Pairwise correlations between feature maps are computed using G^p_l of various orders

LAYERWISE DEVIATION

Methodology 00000€00

EXPERIMENTS

TOTAL DEVIATION

GRAM-OOD*

Normalization of Gram Matrix values

$$\tilde{G}_l^p = \frac{\hat{G}_l^p - \min(\hat{G}_l^p)}{\max(\hat{G}_l^p) - \min(\hat{G}_l^p)}.$$
(3)

- Ensures that the class-conditional bounds values are computed from the same interval regardless the layer
- ► It is possible to consider only activation layers
- It does not require higher-order Gram Matrix for skin cancer detection

INTRODUCTION	Methodology	Experiments	CONCLUSION
000	0000000	0000	000
			(

GRAM-OOD*

Overview:

INTRODUCTION 000	Methodology 0000000	Experiments •000	CONCLUSION 000

- ► In-distributions: ISIC 2019 dataset
- Out-of-distributions: a collection of different datasets

 Deep models: DenseNet-121, MobileNet-v2, ResNet-50, and VGGNet-16

INTRODUCTION	Methodology	EXPERIMENTS	CONCLUSION
000	0000000	0000	000

ISIC \times **all**: DenseNet-121 and MobileNet-V2

Model	000	TNR @ TPR 95%		
Widdei	000	Mahalanobis	OOD Cram	OOD Cram*
		(Unbiased)	OOD-Grain	OOD-Glain
	Derm-Skin	45.7	78.0	76.1
	Clin-Skin	68.6	82.8	83.1
Damas Nat 101	ImageNet	92.0	80.7	88.4
Denselvet-121	B-box	92.0	88.0	88.1
	B-box-70	100.	99.9	100.
	NCT	91.6	98.9	99.9
	Derm-Skin	32.4	66.7	72.8
	Clin-Skin	79.8	77.9	83.8
MalalaNatara	ImageNet	85.8	84.3	92.4
MobileNet-v2	B-box	88.4	86.9	98.7
	B-box-70	98.4	100.	100.
	NCT	84.7	99.3	100.

INTRODUCTION	Methodology	EXPERIMENTS	CONCLUSION
000	0000000	0000	000

ISIC \times **all**: ResNet-50 and VGGNet-16

Model	000	TNR @ TPR 95%		
widdei	000	Mahalanobis	OOD-Gram	OOD-Cram*
		(Unbiased)	OOD-Grain	OOD-Grain
	Derm-Skin	36.9	74.8	73.2
	Clin-Skin	65.9	84.7	86.3
DeeNiet EO	ImageNet	95.7	86.6	85.8
Kesinet-50	B-box	97.6	88.4	99.3
	B-box-70	100.	100.	100.
	NCT	96.9	99.9	100.
	Derm-Skin	31.7	79.8	77.5
	Clin-Skin	66.3	80.7	80.6
VCCN-+1(ImageNet	72.8	77.6	81.7
VGGNet-16	B-box	85.9	86.5	94.6
	B-box-70	93.1	100	100
	NCT	85.2	99.7	100.

INTRODUCTION	Methodology	Experiments	CONCLUSION
000	0000000	0000	000
			(

ISIC 2019 Unknown label detection:

Model	AUC	Average Precision
widdei	Mahalanobis / Gr	am-OOD / Gram-OOD*
DenseNet-121	52.3 / 67.3 / 69.3	20.1 / 28.9 / 31.1
MobileNet-v2	52.9 / 68.7 / 69.5	20.2 / 31.4 / 32.6
ResNet-50	56.1 / 70.4 / 70.2	21.6 / 33.2 / 33.7
VGGNet-16	54.1 / 66.9 / 69.5	20.9 / 30.2 / 32.6

INTRODUCTION	Methodology	Experiments	Conclusion
000	0000000	0000	●00

CONCLUSION

- Gram-OOD based methods work better than Mahalanobis for the realistic experiment
- Gram-OOD* performs better than the original approach for most of OOD datasets
 - The normalization plays a key role in combining deviations across layers
 - A good normalizing scheme can yield significant improvements in detection rates and should be explored
- Future research: train models that can implicitly detect out-of-distribution samples by taking into account the information contained in the various orders of gram matrices

ACKNOWLEDGMENTS

We thanks the financial support of:

- Coordination for the Improvement of Higher Education Personnel (CAPES)
- National Council for Scientific and Technological Development (CNPq)
- Foundation for Supporting Research and Innovation in Espírito Santo (FAPES)
- ► Canadian Institute for Advanced Research (CIFAR)

Thank you for your time! https://github.com/paaatcha/gram-ood