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Disease classification and quick model adaptation in low-data situations and datasets
with long-tailed class distributions using meta-learning techniques.

Few-shot learning techniques such as the gradient based Reptile [1] and distance metric
based Prototypical networks [2] are used.

Evaluated our approach on 3 publicly available skin lesion datasets: ISIC 2018 [3],
Derm7pt [4] and SD-198 [5] datasets.

Obtained significant performance improvement over pre-trained models using meta-
learning techniques.

Incorporated Group Equivariant convolutions (G-convolutions) [6] to improve disease
identification as they make the network equivariant to discrete transformations like
rotation, reflection and translation.
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Figure 1. Figures showing class distribution in skin lesion datasets: ISIC 2018, Derm7pt and SD-198. The classes towards head of the class distribution
(common-diseases), shown in red, are taken as train classes and classes at the tail of the distribution (new / rare disease), shown in blue color, are chosen as
test classes.

Dermoscopy

(a) ISIC 2018 [3] (b) Derm7pt [4] (c) SD-198 [5]

Figure 2. Figure showing some sample images from skin lesion datasets.
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New ailments are continuously being discovered, with lack of sufficient data for accurate
classification.

Annotations of these ailments like skin diseases from images by experienced doctors is
very time consuming, labour intensive, costly and error-prone.

Conventional deep networks tend to fail when there is limited annotated data available
since they overfit.

However, humans can learn quickly from a few examples by leveraging prior knowledge.

Need for robust models for image-based diagnosis which can quickly adapt to novel
diseases with few annotated images.
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1 Several meta-learning techniques have been proposed in the literature and applied for
classifying real world scene image datasets.

1 Nichol et al’'s work ‘On first-order meta-learning algorithms.’ [1]

[  Snell et al’'s work ‘Prototypical networks for few-shot learning.’ [2]

1 Vuorio et al’s work ‘Multimodal model-agnostic meta-learning via task-aware
modulation.’ [9]

[  There have been a couple of works on meta-learning for skin lesion images.

[ Lietal [7] proposed a difficulty-aware meta-learning method that dynamically monitors
the importance of learning tasks and evaluates on ISIC 2018 dataset.

1 Prabhu et al [8] proposed learning a mixture of prototypes for each disease initialized
via clustering and refined via an online update scheme.

A G-convolutions [6] greatly improve performance in skin lesion image classification as
orientation is not an important feature in such images.
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Propose to use meta-learning for rare disease identification in skin lesion image datasets
having long-tailed class distributions and few annotated data samples.

Explore the gradient based Reptile and metric-learning based Prototypical networks for
identifying diseases from skin lesion images.

Use of Group Equivariant Convolutions (G-Convolutions) improve the network’s
performance.

Meta-DermDiagnosis is evaluated on 3 publicly available skin lesion datasets such as
ISIC 2018, Derm7pt and SD-198 and compare the classification performance with pre-
training as a baseline.

The proposed meta-learning based disease identification system can also be applied on
other medical imaging datasets
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Figure 3. Figure showing an overview of the proposed approach Meta-DermDiagnosis for identification of
diseases in skin lesion datasets based on meta-learning techniques Reptile and Prototypical networks.
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[ We select the training classes comprising of common diseases that contain abundant

data. Testing classes consist of unseen / rare disease classes with very few examples.

1 We use gradient-based Reptile and metric-learning based Prototypical networks along

with G-Convolutions (incorporated in the neural networks) for improving few-shot disease
classification from skin lesion images.

Reptile

Algorithm 1 Reptile [25]

1:
2:
3:

4:

Initialize @, the vector of initial parameters
for iteration = 1,2, ... do

Sample task 7, corresponding to loss L7 on weight In Reptile algorithm, U%(8) is the operator (e.g. corre-

sponding to Adam optimizer or SGD) that updates 6 using

VECICOI(;SnfLu[e g — U{’ﬁ (), denoting k SGD or Adam k mini-batches on data sampled from 7'.
steps ~

Update 8 + 8 + €(6 — 8), where ¢ is the stepsize
parameter

- end for
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Figure 4. Pipeline for gradient-based meta-learning on skin lesion classification.

Random
Initialization

d  2-way classification tasks for the 3 datasets. For SD-198, 20 train classes and 70 test classes were
used, so we also experimented with 4-way classification tasks.

d  We query 15 images from the meta-train dataset for each of the classes in a task during the meta-
training stage.

1 During meta-testing, k shot fine-tuning is performed on the meta-trained model. kis 1, 3, and 5
indicating 1-shot, 3-shot, and 5-shot respectively.

1 The final inference is performed on the entire testing split of the classes in the meta-test task.
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Figure 5. Prototypical networks in the few-shot classification. Few-shot prototypes c, are
computed as the mean of embedded support examples for each class.

Use an embedding function f, to encode each input into a M-dimensional feature vector.

Let S, denotes the set of examples labeled with class k eC. A prototype feature vector is defined for
each class k as follows: 1
k= 2, Jfelxi)

]Skl (;,4: )ESK

1 Given a distance function d, prototypical networks produce a distribution over classes for a query
point x based on a softmax over distances to the prototypes in the embedding space as follows:

oy exp(—d(fe(x),cr))
Pely = k|x) = >k exp(—d(fp(x), crr))
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1 Trained Euclidean distance-based prototypical networks with the training dataset containing 4, 13, and
20 classes for the ISIC, Derm7pt, and the SD-198 datasets respectively.

1 The train-shot is 15, ie. 15 images per class are randomly sampled per episode from the n train
classes during meta-training, and subsequently the model is trained on these images.

[ During meta-testing, 2-way and 4-way classification tasks are created, 1-shot, 3-shot, and 5-shot fine-
tuning is performed, and average accuracy and AUC values are computed on the test set.

Pre-trained Networks (Baseline)
A Involves training a neural network on entire training dataset of all the train classes

1 For fine-tuning, 2-way and 4-way classification tasks are created, and 1-shot, 3-shot, 5-shot fine-tuning
Is performed.

1 Average accuracy and AUC is computed on the test dataset of the meta-test tasks created in the
previous step.



Results

Table 1. Performance comparison of AUC (in %) and Accuracy (in %) on the ISIC 2018 skin lesion dataset for 2-way classification tasks.

Pre-trained Reptile Prototypical Networks

Avg. AUC  Avg. Accuracy Avg. AUC Avg. Accuracy Avg. AUC Avg. Accuracy

1-shot 59.7 54.8 60.3 58.0 61.6 593
w/o G-Conv  3-shot 67.8 65.2 73.1 73.4 70.2 67.9
5-shot 72.0 71.5 79.6 76.2 75.4 73.0
1-shot 61.3 62.6 68.1 64.3 65.7 64.5
w/ G-Conv  3-shot 72.8 69.3 81.2 76.7 75.8 73.5
5-shot 79.1 79.4 86.8 82.1 82.9 79.7

Table 2. Performance comparison of AUC (in %) and Accuracy (in %) on the Derm7pt skin lesion dataset for 2-way classification tasks.

Pre-trained Reptile Prototypical Networks

Avg. AUC  Avg. Accuracy Avg. AUC Avg. Accuracy Avg. AUC Avg. Accuracy

1-shot 56.9 584 59.7 60.2 60.6 62.5
w/o G-Conv  3-shot 62.1 60.7 64.1 65.7 65.8 63.9
5-shot 66.6 64.9 71.4 70.5 68.2 66.7
1-shot 60.8 59.5 62.1 61.8 63.7 64.1
w/ G-Conv  3-shot 62.6 62.3 68.7 69.9 65.3 66.8

5-shot 69.8 65.2 71.2 76.9 72.8 69.5




Table 3. Performance comparison of AUC (in %) and Accuracy (in %) on the SD-198 skin lesion dataset for 2-way classification tasks.

Pre-trained Reptile Prototypical Networks

Avg. AUC  Avg. Accuracy Avg. AUC  Avg. Accuracy Avg. AUC Avg. Accuracy

1-shot 564 55.7 64.1 63.0 594 59.8

w/o G-Conv 3-shot 65.3 60.7 77.4 72.9 70.6 66.6
5-shot 77.9 73.6 84.6 80.4 80.7 783

1-shot 574 56.9 68.6 65.3 62.9 64.5

w/ G-Conv 2-way  3-shot 70.2 69.1 79.1 75.8 74.5 72.1
5-shot 84.2 76.5 89.5 83.7 85.6 80.2

In some 1-shot learning cases like for ISIC and Derm7pt datasets, the prototypical networks perform
slightly better than Reptile.

For slightly higher number of samples, Reptile outdoes prototypical networks.
Performance of meta-learning and baseline pre-training: 5-shot > 3-shot > 1-shot.

Use of G-convolutions improves the network’s performance on all 3 datasets as they make the
neural network equivariant to image transformations.
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