A Customized Camera Imaging Pipeline for Dermatological Imaging

ISIC Skin Image Analysis Workshop @ CVPR 2019

Hakki Can Karaimer¹ Iman Khodadad²

Farnoud Kazemzadeh² Michael S. Brown¹

¹York University, Toronto

² Elucid Labs

Talk's topic

A customize camera for dermatological analysis

Challenges

- 1. Machine vision camera vs. consumer camera
- 2. How to use the visible image with the narrow band spectral image?

 There are a number of steps onboard a camera that convert the light falling on the camera's sensor image (raw image) to the final R,G,B image output

 These steps are collectively called the "in-camera image processing pipeline"

Intermediate images for each stage

Intermediate images for each stage

Machine Vision vs. Consumer Camera Pipelines

 Why does a machine vision camera's image appear different from consumer camera?

Typical pipeline for machine vision cameras

Machine Vision vs. Consumer Camera Pipelines

 Why does a machine vision camera's image appear different from consumer camera?

Typical pipeline for machine vision cameras

Typical pipeline for consumer cameras

Customized imaging pipeline

Our customized camera

Visualization/

live preview

LED flat-field correction

A flat-field correction for each LED

- Sensor needs to be colorimetrically calibrated
- Color space transform (CST) to map raw-RGB values to the CIE XYZ color space

Errors with and without sensor calibration

Mean angular error: 22.23° Mean angular error: 7.44° Mean angular error: 2.80° Mean angular error: 2.66°

CC: Macbeth color checker chart

SC: Skin colors from the Munsell Book of Color

Photo-finishing

 Photo-finishing to make the images look visuallypleasing

Photo-finishing

- Photo-finishing to make the images look visuallypleasing
- We can mimic different consumer cameras

Non-visible spectral images

Our customized camera

Visualization/

live preview

Non-visible spectral images

Next: Enhancement using narrow band spectral images

Visualization/

live preview

Non-visible spectral images

Narrow band spectral images

Spectral data fusion

- Three methods:
 - Modified bilateral filtering [1]
 - Modified local Laplacian filter [2]
 - Wavelet-based fusion [3]

^[1] Clement Fredembach, Nathalie Barbuscia, and Sabine Süsstrunk. Combining Visible and Near-Infrared Images for Realistic Skin Smoothing. In *Color and Imaging Conference*, 2009.

^[2] Mathieu Aubry, Sylvain Paris, Samuel W. Hasinoff, Jan Kautz, and Fredo Durand. Fast Local Laplacian Filters: Theory and Applications. In SIGGRAPH, 2014.

^[3] Michel Misiti, Yves Misiti, Georges Oppenheim, and Jean-Michel Poggi. Wavelets and Their Applications. Newport Beach, CA: Wiley-ISTE.

Examples of data fusion

Feedback from clinicians

- Is there a preference between the methods and the different spectral bands?
 - Among the three methods used to perform spectral image fusion, do you have a preferred method?
 - Is there a particular spectral image that you feel provides the most information?
 - Do you feel this type of fusion is useful for you in a clinical setting (i.e., would it help you make a more informed decision)?

Clinician feedback

- The most preferred:
 - Wavelet-based method
 - Spectral band 8 (NIR 1100 nm)
- Comments from our participants include:
 "Yes, I think that the fusion is very helpful"
 "I could see the pattern of each lesion much better (reticular, dots, borders)."
- A dermatologist who was neutral commented:
 "Only in certain cases."

Still an area of active research.

Conclusion

- Presented a customize camera pipeline for dermatological imaging
 - Modified machine-vision camera
 - Based on understanding of consumer camera pipelines
 - Useful for the design of similar devices
- Spectral data fusion
 - Older methods shouldn't be ruled out
 - Open problem, room for more research

Thank you!