Devansh Bisla, Anna Choromanska, Russell S. Berman, Jennifer A. Stein, David Polsky

New York University, New York, NY, USA

Code: https://bit.ly/2KFRp5e Paper: https://bit.ly/2FBg0ZP

Motivation

Figure 1: (Left) Data Imbalancedness (Right) Data Impurities

Existing computational techniques

- Traditional machine learning
 - Hand-crafted extraction of features from the data such as
 - Lesion Symmetry/Asymmetry.
 - Irregular borders.
 - Non-Uniform pigmentation.
 - Lesion size.
 - Problem: not scalable to large data sets.
- Deep Learning
 - Automatically extract features from large sized data.
 - Problem: Needs large, balanced, and unbiased data.

Traditional training

Visualization results for the conventionally-trained model (**Top**): Original image. (**Bottom**): Visualization mask overlaid on the original image.

The model overfits to image occlusions such as hairs, rulers and ink marks.

Proposed approach

- Data Impurities:
 - Removal of unwanted objects such as hair, rulers etc.
- Data Imbalancedness
 - Synthetic data generation.
 - Data augmentation.

Data purification

- Thresholding in the LUV color space combined with morphological operations. Note that this may also remove dark regions belonging to the lesion itself. [Philippe Schmid-Saugeon et al]
- Overlay the processed image with the segmented lesion obtained from our segmentation algorithm.

Data purification - results

Figure 2: **Top**: Original images. **Bottom**: Images obtained after a,b) scales, c) hairs and scales, and d,e) hairs removal.

Motivation Related work Proposed approach Empirical results Conclusion

Data generation

Figure 3: Architecture of Generative Adversarial Network

Main idea:

- Train a generator network to generate images which have similar distribution to the one followed by the training data, but do not appear in the training data set.
- The discriminator provides a feedback on similarity between the two distributions.

We generated 350 images of melanoma and 750 images of seborrheic keratosis.

Data generation - results

Figure 4: Histograms of the MSE values for (left) seborrheic keratosis and (right) melanoma.

Data generation - results

Classification results: confusion matrix

Figure 5: Confusion matrix obtained by traditional baseline (**left**) and proposed model (**right**).

Classification results: ROC-AUC

Mean Value	ROC-AUC	
Our Approach	0.915	
Kazuhisa Matsunaga[K. Matsunaga et al.]	0.911	
RECOD Titans[A. Menegola et al.]	0.908	
<u> </u>		

Table 1: Leader-board for melanoma and seborrheic keratosis combined.

Method	82%	89%	95%
Top AVG[K. Matsunaga et al.]	0.729	0.588	0.366
Top SK [I. Gonzalez Diaz et al.]	0.727	0.555	0.404
Top M [A. Menegola et al.]	0.747	0.590	0.395
Our Approach	0.697	0.648	0.492

Table 2: Specificity values at sensitivity levels of 82%/89%/95% for melanoma classification. Top AVG, Top SK, and Top M denote the winning approaches of the ISIC 2017 challenge.

Classification results visualized

Figure 6: Visualization results for seborrheic keratosis. **Top**: Original image. **Bottom**: Visualization result.

Classification results visualized

Figure 7: Visualization results for Nevus. **Top**: Original image. **Bottom**: Visualization result.

Conclusion

- Deep learning based methods are the most accurate and scalable, but they require large, pure and balanced training data sets.
- We presented solutions to improve effectiveness of classification systems by data purification (removal of unwanted objects) and data augmentation (synthetic data generation).