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Artificial intelligence (AI) has been described as a set of “prediction
machines.” In general, the technology is great at generating
automated predictions. But if you want to use artificial intelligence in
a regulated industry, you better be able to explain how the machine
predicted a fraud or criminal suspect, a bad credit risk, or a good
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More clinical evidence needed to accelerate adoption
Al-enabled decision support: report
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GDPR regulations put premium on transparent Al

As the EU's GDPR regulations go into effect, enterprises must focus on building
transparency in Al applications so that algorithms' decisions can be explained.

Sponsored News

George Lawton The European Union's new GDPR regulations could shake up the way
enterprises craft algorithms to make decisions, particularly when it

comes to building transparent Al applications. Building a Data-Driven Business with Advanced
Analytics
¥ in X
"GDPR will impact all industries, and has particularly relevant
2o . ¥ F 3 T i { Y¢ B h the Right U: f
ramifications for Al developers and Al-enabled businesses," said Dillon Erb, CEQ at Paperspace e oamnn: YourSusinesy It e il Ysaio

Co., an Al cloud provider.
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e What do we mean by explainability and interpretability?
e |nterpretability in dermoscopy — A historical perspective

e Where to go nexte
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Explainability and Interpretabillity

1.:Y) Explainable AI — What Are We Trying To Do?

EEEY. 8 * Why did you do that?
DEEDE. * Why not something else?
“mll NEC Learning This is a cat + When do you succeed?
FRoama (p=.93) + When do you fail?
L B R Process !
ME~s1s0 * When can | trust you?
(90 g U HB) + How do | correct an error?

Training Learned Output User with

Data Function a Task

\\7~
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IR Explainability and Interpretability

1.1y Explainable AI — What Are We Trying To Do?

Today

EEET B * Why did you do t.hat?
DEEDEs * Why not something else?
Tl NEN Learning This is a cat + When do you succeed?
ERoaMEe (p=.93) + When do you fail?
L B RS Process
M@~ 1=0r * When can | trust you?
ERERER * How do | correct an error?
Training Learned Output User with
Data Function a Task
— + | understand why
R This is a cat: - « | understand why not
Nevy Ve 01T Py s -Itnhdaslfl;r/, Whigkers, « | know when you'll succeed
Learning [ ¢o.4%. §3.0m | 3¢ caws. W ). | know when you'l fai
p I ! 1 | l ! l 17| «1t has this feature: y
rocess A &b b ¢ m * | know when to trust you
kb FEEE ma * | know why you erred
Training Explainable Explanation User with
Data Model Interface a Task

source darpa via @mikequindazzi
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lS? What does it mean for dermoscopy<¢

8 ‘rﬁ L2 Process
o A ’ hfﬁj?
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What does it mean for dermoscopy<¢

e A
| S
. Q@ /-G8 e
Learning o e o 0
el e e
Process ® oo o
¢ @
@oputlayer @ Hiddentayer @ Output Layer

Learned Model
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'S? What does it mean for dermoscopy<¢

Learning
Process

Learned Model
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What does it mean for dermoscopy<¢

This lesion is a melanoma
because:

« It is melanocytic;

« It has more than 3 colors.

L
Learning » « This structure was detected:
Process ¢ 2 ¢ A
o} ® O ' O
] | ] H

Interpretable
&

Structured iy
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The Design of an Interpretable Model

 What should we have in mind when designing an
interpretable model?

\\ /7~
s

13
Institute for Systems and Robotics | LISBOA Computer and Robot Vision Lab 4 e



) T
R |
The Design of an Interpretable Model

 What should we have in mind when designing an
interpretable model?

* The final user! (Dermatologists or Patients)
* This is a collaborative process!
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The Design of an Interpretable Model

 What should we have in mind when designing an
interpretable model?

* The final user! (Dermatologists or Patients)
* This is a collaborative process!

e Where should we act to improve interpretabilitye

1. Features?
2. Classifiere
3. Infer from the black-box model?
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The Design of an Interpretable Model

 What should we have in mind when designing an
interpretable model?

* The final user! (Dermatologists or Patients)
* This is a collaborative process!

e Where should we act to improve interpretabilitye

1. Clinically Inspired Features
2. Structured & Explainable Classifiers
3. Model Explainability - Visualization
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The Design of an Interpretable Model

 What should we have in mind when designing an
interpretable model?

* The final user! (Dermatologists or Patients)
* This is a collaborative process!

e Where should we act to improve interpretabilitye

1. Clinically Inspired Features
2. Structured & Explainable Classifiers
3. Model Explainability - Visualization
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Dermoscopy Image Diagnosis

| p= y €{0,1}
Segmentation fed i Classification i
9 Extraction Traditional

T CAD

[ Learning J

Feature maps

End-to-End
CAD

Convolutions Subsampling Convalutions Subsampling Fully connected N \/ 7
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INTERPRETABILITY IN
TRADITIONAL CADS
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Dermoscopy Image Diagnosis

T e > y € {0,1)
Segmentation Featlire Classification i
9 Extraction \ Traditiondl

T CAD

[ Learning J

\\7~
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Dermoscopy Image Diagnosis

X1
x=|:
xn

T > y € {0,1}
Segmentation Featlire -—=» Classification > e
9 Extraction | Traditiondl

T CAD

[ Learning J

.
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Interpretable Features

e What kind of features is interpretable?

e Inspired by medical knowledge
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Inferpretable Features

Traditional Hand-Crafted Features

Asymmetry Border/Shape Color Texture
Moments of + Fractals « Color statistics « Gabor filters
inertia i . .

Intensity * Relative colors « Haralick
Shape, color, and rofiles o
textlare maps P Color quantization - LBP
Wavelets Diff t col )
Centroid location Irrerent color . Grad|¢nt based
spaces descritptors

 These features were inspired by medical knowledge.

e But were these features interpretable?

\\ /7~
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Inferpretable Features

Traditional Hand-Crafted Features

Asymmetry Border/Shape Color Texture
« Moments of + Fractals « Color statistics « Gabor filters
inertia ) . .
« Intensity * Relative colors « Haralick
+ Shape, color, and profiles

texture maps « Color quantization - LBP

« Wavelets i )
- Different color « Gradient based

+ Centroid location .
spaces descritptors

Medical Counterparts (ABCD Rule)

Asymmetry Border/Shape Color Structures
« Maximum of 2 « Abrupt ending of « Identification of - Identification of
axes pigments up to six colors up to 5 structures
« Contour, colors, « Analysis of 8
and structures segments
\\7~
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Inferpretable Features

Traditional Hand-Crafted Features

Asymmetry Border/Shape Color Texture
Moments of + Fractals « Color statistics « Gabor filters
inertia i . .

Intensity * Relative colors « Haralick
Shape, color, and profiles | .
texture maps Color quantization « LBP
Wavelets Diff t col )
Centroid location Irrerent color . Grad|¢nt based
spaces descritptors

 These features were inspired by medical knowledge.

e Butf they did not have a frue match with medical findings.
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Interpretable Features

e What kind of features is interpretable?
 Inspired by medical knowledge

 Have a direct relationship with clinical findings

\\ /7~
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Interpretable Features

e What kind of features is interpretable?
 Inspired by medical knowledge

 Have a direct relationship with clinical findings

e How can we extract them?@
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Interpretable Features

e What kind of features is interpretable?
 Inspired by medical knowledge

 Have a direct relationship with clinical findings

e How can we extract them?@

e Dermatologists use multiple cues to diagnose skin
lesions

e These cues can be seen as “clinically inspired
features”

\\ /7~
s
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Clinically Inspired Features

e Different groups addressed the detection of atf least one
medical feature.

 There are three types of medical features

e Global patterns (Pehamberger, 1987)

\\ /7~
s
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Clinically Inspired Features

e Different groups addressed the detection of atf least one
medical feature.
 There are three types of medical features
e Global patterns (Pehamberger et al. 1987)
e Colors (ABCD Rule, Stolz et al. 1994)

Barata et al., CVIU, 2016 N \ /.
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Clinically Inspired Features

e Different groups addressed the detection of atf least one
medical feature.
 There are three types of medical features
e Global patterns (Pehamberger et al. 1987)
e Colors (ABCD Rule, Stolz et al. 1994)

e Dermoscopic structures (ABCD Rule/7-point checklist)

Barata et al. IEEE TBME, 2012 \\7~
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Clinically Inspired Features

e Different groups addressed the detection of atf least one
medical feature.

 There are three types of medical features

e Global patterns (Pehamberger et al. 1987)
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e Detection of 5 patterns:

Institute for Systems and Robotics | LISBOA

Globular
Homogeneous
Reticular
Multicomponent

Global Patterns

Training images Patches

Test image

MREF features

Quantization
(visual words)

ol

“ A 2
s

||
| * (3

\ *e (4
.

. ~,
‘ 0: Cs 0..0( 6

‘e
| *C7

o
| 0O L.c8
A

CIC2C3C4C5C6CTC8CY

Computer and Robot Vision Lab

BoF representation
(training images)

CI1C2C3C4C5C6CTCRCY

CIC2C3C4C5C6CTCRCY

CIC2C3C4C5Co CTCRCY

|

— | CLASSIFIER

| Classification
result

Saéz et al., IEEE TMI, 2014
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Clinically Inspired Features

e Different groups addressed the detection of atf least one
medical feature.

 There are three types of medical features

e Colors (ABCD Rule, Stolz et al. 1994)

\\ /7~
s

34
Institute for Systems and Robotics | LISBOA Computer and Robot Vision Lab 4 e



TECNICO
LISBOA

IR

Detection of Colors

e Main idea
1. Extract representative patches for each color

- . - k| —
Dark I I_-. (a) (b) (¢) Dark-brO\\Il - ‘6

Light brown I ~ EEs NSNS Light-brown lmgFll’
Red EEE CEEEE J - Red 133
Buegey B HENEEEEEEENEEEEYY NN » s gm]éem\. | .
() ©) (n
Seidenari et al., BJD, 2003 Sdez et al., IEEE JBHI, 2019 Sabbaghi et al., IEEE JBHI, 2019

\\ /7~
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Detection of Colors

e Main idea
1. Extract representative patches for each color

BEE .
pacoon i NN @ ®) © Dk brovn e — 1
Light brown IS T ] PP ] a Light-brown | i 59
i E : Red %
Bue-gey Hl HENNENEENENNEEE"YINEEEEE i [ gl?xle[emv | MmN e
(d) (€) in
Seidenari et al., BJD, 2003 Sdez et al., IEEE JBHI, 2019 Sabbaghi et al., IEEE JBHI, 2019

2. Learn some representation for the pallete

\\ /7~
36 < : g
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Detection of Colors

e Main idea
1. Extract representative patches for each color

o || RN Datrom | N
Light brown I EEE TR S - Light-brown § ey 50
\'quitijte B EFEE fEEEE - v N RC‘ , i'{}
Blue-grey [ 1N M O O 0 gm’é"m‘, | .
d) (e) (n
Seidenari et al., BJD, 2003 Sd&ez et al., IEEE JBHI, 2019 Sabbaghi et al., [EEE JBHI, 2019

2. Learn some representation for the pallete

3. Associate new pixels/patches to the pallete

 Seidenari et al., BJD, 2003 \ 7
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Clinically Inspired Features

e Different groups addressed the detection of atf least one
medical feature.

 There are three types of medical features

e Dermoscopic structures (ABCD Rule/7-point checklist)

\\ /7~
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Detection of Dermoscopic Structures

M Blue-Whitish Veil

B Regression Structures

B Hypopigmentation

B Pigment Network

m Dots/Globules

W Vascular Structures

™ Negative Network

W Streaks
Non-melanocytic criteria

m Blotches

‘ Barata et al., IEEE JBHI, 2019 \\ /s
39
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Detection of Dermoscopic Structures

M Blue-Whitish Veil

M Regression Structures
B Hypopigmentation

B Pigment Network

m Dots/Globules

W Vascular Structures

™ Negative Network

m Streaks

Non-melanocytic criteria

m Blotches

‘ Barata et al., IEEE JBHI, 2019 \\ /s
40
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Pigment Network

e Main ideas:

1. Explore the geometric and
color properties of pigment
network

Computerized
Medical Imaging
and Graphics

PERGAMON Computerized Medical Imaging and Graphics 22 (1998) 375-389

Techniques for a structural analysis of dermatoscopic imagery

Matthew G. Fleming?, Carsten Steger”, Jun Zhang®, Jianbo Gao®, Armand B. Cognetta®,
llya Pollak®, Charles R. Dyer"

*Department of Dermatology, Medical College of Wisconsin and Zablocki VA Hospital, Milwaukee, W1, USA L L w oo
*Forsch i hen, Informatik IX, Technische Universitit Miinchen, Munich, Germany

“Department uf Cny:;;mmr Science and Electrical Engineering, University of Wisconsin, Milwaukee, W1, USA Thﬂ \,ra] ue [}f [h,&_ stat l at ic H.] app]-(] achﬂ 5 Hh ou ] d b,ﬂ,c{}me_

“Private Practice, Tallahassee, FL, USA

e Computer e, Lo o Woeomsin tasten st o clearer with time, as more lesions are evaluated and addi-

tional groups involved. However, we have been interested in

Abstract exploring an alternative, structural approach to dermato-
Techniques were developed lor automated detection and characterization of dermatoscopic structures, including the pig l:(]]_'jil: imagﬂ ana]}fsis.‘ Thih pr[{}ach Sﬁﬂk}; tl:_] ['['I{}d{-_‘,]

brown globules. These techniques incorporate algorithms for grayscale shape exiraction based on difTerential geometry dev b
a snake algorithm, and a modification of the region competition strategy of Zhu and Yuille. A novel approach was dev

segmentation ol pigmented lesions, based on stabilized inverse dilfusion equations. Procedures for detection of air bult h Uumsen intﬂmrﬂtat i_(_]n maore C]{}Sﬂ.]}l’ N I:}}lI ex trﬂ_{: ting and AS505-

dermatoscopic images are also reported. © 1998 Elsevier Science Lid. All rights reserved.

Keywords: Melanoma; Nevus; Dermatoscopy: Dermoscopy; Epiluminescence microscopy; Image analysis S ing thﬂ C] H_!',.hi cal d ﬂm‘l Ht[}sc(}pi c featu rﬂ:‘h If S-u Ch e-x tra{: ti [}n

\\7~
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Pigment Network

e Main ideas:

1. Explore the geometric and
color properties of pigment
network

Directional
Filters

Original Laplacian of Gaussian Image to Graph

Threshold

> ” > G R e ) o =

Classification Pigment Network Cyclic Subgraphs G
Component
Analysis

Sadeghi et al., CMIG, 2011 e, MBS

Exclusion

\\7~
Barata et al. IEEE TBME, 2012 49
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Pigment Network

e Main ideas:

1. Explore the geometric and
color properties of pigment
network

2. Rely on machine learning
algorithms

Garcia-Arroyo et al.,, CMIG, 2018

Kawahara et al., IEEE JBHI, 2019 |

(g) \\//
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IR Blue-Whitish Vell

e Main idea:
1. Learn a color palette

Madooei et al., MICCAI'13

\\ /7~
s
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'S? Blue-Whitish Vell

e Main idea:
1. Learn a color palette

Madooei et al., MICCAI'13

2. Learn arepresentation

\\ /7~
s
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'S? Blue-Whitish Vell

e Main idea:
1. Learn a color palette

Madooei et al., MICCAI'13

2. Learn arepresentation

3. Match new patches/pixels

Madooei et al., MICCAI'13

N4
\\7~
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Dermoscopy Image Diagnosis

X1
x=|:
xn

T > y € {0,1}
Segmentation Featlire -—=» Classification > e
9 Extraction | Traditiondl

T CAD

[ Learning J

.

\\7~

47 < : 4
Institute for Systems and Robotics | LISBOA Computer and Robot Vision Lab 4 s 1,"‘@



) T
R .
Interpretable Classifiers

 What is an interpretable classifiers
e A classifier that is able to explain its decision

\\ /7~
s
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Interpretable Classifiers

 What is an interpretable classifiers

* A classifier that is able to explain its decision based
on medical knowledge

\\ /7~
s
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Interpretable Classifiers

 What is an interpretable classifiers

* A classifier that is able to explain its decision based
on medical knowledge

(@ (b)
Area —> (s,<00097)
yes . ho
@ Benign ( $;<0979? | €«——Sha pe
no - Yes
| Benign | Melanoma

Celebi et al., CMIG, 2008

\\ /7~
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Interpretable Classifiers

 What is an interpretable classifiers

* A classifier that is able to explain its decision based
on medical knowledge

e A structured classifier that incorporates medical
knowledge

Skin Lesion Image

Classifier
“MN-BS”

.4-

(+)MSLs NoMSLs(-)

Classifier Classifier
ISM-NH I‘B-S“
(+)

Melanoma Nevus BCC SK Shimizu et al., [EEE TBME, 2014

\\ /7~
s
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INTERPRETABILITY IN
END-TO-END CADS

\\7~
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Dermoscopy Image Diagnosis

Feature maps

End-to-End
CAD

Convolutions Subsampling Convalutions Subsampling Fully connected N \/ 7

s 3
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Dermoscopy Image Diagnosis

Feature Extraction Decision

\

Feature maps

End-to-End
CAD

Convolutions Subsampling Convalutions Subsampling Fully connected N \/ 7

54 < : 4
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e How can we infer interpretability when we do not impose
the features nor the classifiere

Feature Extraction Decision

\

Feature maps

End-to-End
CAD

Convolutions Subsampling Convalutions Subsampling Fully connected N \/ 7

55 < : 4
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e Different visualization techniques can be used to
* Understand what the network is “seeing”

Feature Maps

malignant benign malignant benign
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Model Explainabillity

e Different visualization techniques can be used to
* Understand what the network is “seeing”

* Understand what guides the decision
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Zhang et al., IEEE TMI, 2019

Class Activation
Maps
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Model Explainabillity

e Different visualization techniques can be used to
e Understand what the network is “seeing”

e Understand what guides the decision

e These technigues improve explainability but may not lead
to interpretability!
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Incorporating Medical Features

e Can we incorporate medical features in DNNs¢
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Incorporating Medical Features

e Can we incorporate medical features in DNNs¢
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Incorporating Medical Features

e Can we incorporate medical features in DNNs¢
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DermaKNet: Incorporating the Knowledge of
Dermatologists to Convolutional Neural

Networks for Skin

Ivan Gonzalez-Diaz

Abstract—Traditional approaches to automatic diagnosis
of skin lesions consisted of classifiers working on sets of
hand-crafted features, some of which modeled lesion as-
pects of special importance for dermatologists. Recently,
the broad adoption of conveolutional neural networks (CNNs)
in most computer vision tasks has brought about a great
leap forward in terms of performance. Nevertheless, with
this performance leap, the CNN-based computer-aided di-
agnosis (CAD) systems have also brought a notable reduc-
tion of the useful insights provided by hand-crafted fea-
tures. This paper presents DermaKNet, a CAD system based
on CNNs that incorporates specific subsystems modeling
properties of skin lesions that are of special interest to der-
matologists aiming to improve the interpretability of its di-
agnosis. Our results prove that the incorporation of these
subsystems not only improves the performance, but also
enhances the diagnosis by providing more interpretable
outputs.

Index Terms—Skin lesion analysis, melanoma, convolu-
tional neural networks, dermoscopy, CAD.

Lesion Diagnosis

, Member, IEEE

improve it by providing valuable information about the clini-
cal case, and serving as filtering tools that automatically detect
those cases with a high confidence of benignity, which can have
a great impact in the final amount of moles that must be analyzed
by the clinicians.

However, despite the research efforts devoted to the topic,
these systems have yet to become part of everyday clinical prac-
tice. From our point of view, there are two factors currently ham-

pering the adoption of CAD systems by dermatologists. Firstly,
the lack of large, open, annotated datasets, containing images
of lesions gathered by different medical institutions and a great
ety of dermatoscopes, has undermined the generalization
capability of developed CAD systems, leading to poor results
when applied to different datasets. Additionally, it has prevented
standard and fair comparisons between proposed methods, thus
hindering the scientific advances in the field. Secondly, most
of CAD systems simply provide a tentative diagnosis to the
clinicians. which does not actuallv heln them much in practice.
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Seven-Point Checklist and Skin Lesion
Classification Using Multitask Multimodal
Neural Nets

Jeremy Kawahara
and Ghassan Hamarneh

Abstract—We propose a multitask deep convolutional
neural network, trained on multimodal data (clinical and
d ges, and patient metadata), to classify the
7-point melannma checklist criteria and perform skln le-
sion diagnosis. Our neural network is trained using several
multitask loss functions, where each loss considers differ-
ent combinations of the input modalities, which allows our
model to be robust to missing data at inference time. Our
final model classifies the 7-point checklist and skin con-
dition diagnosis, produces multimodal feature vectors suit-
able for image retrieval, and localizes clinically discriminant
regions. We benchmark our approach using 1011 lesion
cases, and report comprehensive results over all 7-point cri-
teria and diagnosis. We also make our dataset (images and
metadata) publicly available online at http:/iderm.cs.sfu.ca.

Index Terms—Classification, convolutional neural net-
works, deep learning, dermatology, melanoma, skin, 7-point
checklist.

Computer and Robot Vision Lab

, Sara Daneshvar

, Giuseppe Argenziano,
. Senior Member, IEEE

dermoscopy compared to the unaided eye. However, accurate
diagnosis is challenging for non-experts.

Pattern analysis, which subjectivity assesses multiple subtle
lesion feat s commonly used by experienced dermatal-
ogists to dl\lln“m\h between benign and malignant skin tu-
mours. To simplify diagnoses, rule-hased diagnostic algorithms
such as the ABCD rule [5] and the 7-point checklist [6] have
been proposed and are commonly accepted [7]. In this work
we focus on the T-point checklist, which requires identifying
seven dermoscopic criteria (Table I) associated with melanoma,
where each criteria is assigned a score. The lesion is diag-
nosed as melanoma when the sum of the scores exceeds a given
threshold [6], [8]. Although some literature recommends pat-
tern analysis over the 7-point checklist [9], some works report a
trade-off between melanoma sensitivity and specificity. For ex-
ample, among dermatology residents, the 7-point checklist was

\\7~

61

Syt

“



) T
R . ]
Structured & Explainable Decision

e How can we improve the interpretability of the classifiere
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Structured & Explainable Decision

e How can we improve the interpretability of the classifiers
e Some authors explored taxonomies

7 Lesion ™
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Demyanov et al., ISBI, 2017

Proposal of a Tree-loss function to frain the DNN
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Structured & Explainable Decision

e How can we improve the interpretability of the classifiers
e Some authors explored taxonomies

Image Attention Image Hierarchical
Encoder Module Decoder Diagnosis

> DenseNet- 161

Melanocytic
Melanoma

> ResNet-Inception

Barata et al., ISIC@CVPR, 2019

Fusion of structured classifier with visualization
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Structured & Explainable Decision

e How can we improve the interpretability of the classifiers
 Some authors explored taxonomies
e Other explored content based image retrieval (CBIR)

AJLJ

RESULT 2 RESULT 3

. : Decision Based on
_ ' CBIR

o

e B NASVUS SCC - e

Tschandl et al., BJD, 2018
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e Inferpretable methods require a great amount of detailed
annotations
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DermaKNet: Incorporating the Knowledge of
Dermatologists to Convolutional Neural
Networks for Skin Lesion Diagnosis

Ivén Gonzélez-Diaz ', Member, IEEE

Abstract—Traditional approaches to automatic diagnosis
of skin lesions consisted of classifiers working on sets of
hand-cratted features, some of which modeled lesion as-
pects of special importance for dermatologists. Recently,
the broad adoption of convolutional neural networks (CNNs)
In most cokopular vision tasks fes brought sbout 8 great
leap forward in terms of performance. Never
this performance leap, the
agnosis (CAD) systems have
tion of the useful Insights provided by hand-crafted fea-
tures. This paper presents DermaKNet, a CAD system based
on CNNs that incorporates specific subsystems modeling
properties of skin lesions that are of special interest to der-
matologists aiming to improve the interpretability of its di-
sgnoske. Our reeults prove that the incorporation of theee
subsystems not only improves the perfo Iso
enhances the diagrioels by providiog Tore interpretable
output

Index Terms—Skin lesion analysis, melanoma, convolu-
tional neural networks, dermoscopy, CAD.

improve it by providing valusble information about the clini

bols that automatically dete

at impact i the final amount of moles that must be analyzed
by the clinicians
However, despite the research efforts devoted 1o the topic

these systems have yet to bece

e part of everyday clinical prac
tice. From our point of view, there are two factors currently ham
pering the adoption of CAD systems by

the lack of large, open, annotated datasets, containing images

matologists. Firstly

of lesions gathered by different medical institutions and a great

variety of dermatoscopes, has undermined the generalization
capability of developed CAD systems, leading o poor results
when applied to different datasets. Additionally, it has prevented
standard and fair comparisons between proposed methods, thus
hindering the scientific advances in the field. Secondly, most
of CAD systems simply provide a tentative diag
clinicians. which docs not actsally heln them much in practice.

nosis 10 the

Institute for Systems and Robotics | LISBOA

All of these
works
use weakly
annotated
seftsll

amount of detailed

EMB Ciiis. . /EEE JOURNAL OF BIOMEDICAL ANO HEALTH INFORMATICS, V0L 28,0 2 MARCH 2010 .

Learning to Detect Blue—White Structures in
Dermoscopy Images With Weak Supervision

Ali Madooei =, Mark S. Drew, and Hossein Hajimirsadeghi

Abstract—We propose anovel approach to identify one of
the most significant dermascopic criteria in the diagnosis
of cutaneaus Melancma: the biue—white structure (BWS).
In this paper, we achieve this goal in a multiple instance
lsarning (MIL) framework using anly image-level labels in-

stru

dicating whether the feature is present or not. To this aim, moscOpic

each image is represented as a bag of {(nonoverlapping) re-
gions, or may not.

instance of BWS. A probabilistic graphical model is trained
(in MIL fashion) to predict the bag (image) labels. As output.
we predict the classification label for the image (L., e
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Seven-Point Checklist and Skin Lesion
Classification Using Multitask Multimodal
Neural Nets

Jeremy Kawahara ', Sara Daneshvar ™, Giuseppe Argenziano,

and Ghassan Hamarneh

Abstraci—We propose a multitask deep convolutional
neural network, trained on multimodal data (clinical and
dermoscopic images, and patient metadata), to classify the
7-point melanoma checklist criteria and perform skin le-
sion diagnosis. Our neural network is trained using several
multitask loss functions, where each loss considers differ-
ent combinations of the input modalities, which allows our
odel to be robust to missing data at inference time. Our
final model c\assiries ma 7-point checklist and skin con-
dition diagn ces multimodal feature vectors st
able for image vitieval, and Iocalizes, clinically discriminant
regions. We benchmark our approach using 1011 lesion
cases, and report comprehensive results over all 7-point cri-
teria and diagnosis. We r dataset (images and
metadata) publicly available online at http:/derm.cs.sfu.ca.

Index Terms—Classification, convolutional neural net-
works, deep learning, dermatology, melanoma, skin, 7-point
checkilst.

, Senior Member, IEEE

dermoscopy compared to the unaided eye. However, accurate
diagnasis is challenging for non-experts,

Patier analysis, which subjectivity assesses multiple subtle
Iesion features. is commonly used by experienced dermatol-

ogists 1o distinguish between benign and malignant skin tu-
mours. To simplify diagnoses, rule-based diagnostic algorithms
such as the ABCD rule [5] and the 7-point checklist [6] have
been proposed and are commonly accepted [7]. In this work
we focus on the 7-point checklist, which requires identifying
seven dermoscopic eriteria (Table I) associated with melanoma,
where each eriteria is assigned a score. The lesion is diag
ed s melanoma when the sum of the scores exceeds a g

o

threshold [6], [8]. Although some literature recommends pat-
tem analysis over the 7-point checklist [9], some works report a
trade-off between melanoma sensitivity and specificity. For ex-
ample, among dermatology residents, the 7-point checklist was
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Some Usual Misconceptions

e Inferpretable methods require a great amount of detailed

annotations
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e [tis not possible to apply clinically inspired features to
automatic diagnosis
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Some Usual Misconceptions

e [tis not possible to apply clinically inspired features to
automatic diagnosis
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Lesion Segmentation Region Representation
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e How can we combine model explainability and
interpretatione

e Fine grained attention/activation maps
e Learn to translate the maps into medical terms
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'S? What lies ahead?

e How can we combine model explainability and
interpretatione

e Fine grained attention/activation maps
e Learn to translate the maps into medical terms

e How relevantis our data?
 Identify the most difficult/misleading examples
* Leverage the available data
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